
PullSDK Interfaces User Guide

Version: 2.0

Support PullSDK 2.2.0.169 and above version

Date: Jan. 2012

About This Manual

This User Guide introduces the interface and function operations of the PullSDK.

Contents

Contents

1. Overview of the PullSDK Interfaces... - 1 -

2. Description of the PullSDK Interface Technology... - 1 -

3. Installation of the PullSDK Interface... - 1 -

4. Detailed Description of the PullSDK Interface Functions.. - 2 -

4.1 Connect... - 2 -

4.2 Disconnect... - 3 -

4.3 SetDeviceParam... - 3 -

4.4 GetDeviceParam... - 4 -

4.5 ControlDevice... - 4 -

4.6 SetDeviceData... - 6 -

4.7 GetDeviceData... - 6 -

4.8 GetDeviceDataCount... - 8 -

4.9 DeleteDeviceData... - 9 -

4.10 GetRTLog... - 10 -

4.11 SearchDevice... - 11 -

4.12 ModifyIPAddress... - 12 -

4.13 PullLastError... - 13 -

4.14 SetDeviceFileData... - 14 -

4.15 GetDeviceFileData... - 15 -

4.16 ProcessBackupData... - 16 -

5. Appendix... - 17 -

5.1 Attached Table 1: Detailed Description of Interface Files.. - 17 -

5.2 Attached Table 2: Description of Controller Parameters.. - 17 -

5.3 Attached Table 3: Description of ControlDevice Parameters.. - 24 -

5.4 Attached Table 4: Description of Structure of Function Tables.. - 25 -

5.5 Attached Table 5: Description of Error Codes in the Returned Values.................................... - 28 -

5.6 Attached Table 6: Description of Event Types and Code.. - 30 -

5.7 Formats of Returned Data in Buffer of the GetRTLog Function.. - 34 -

I

5. Appendix

1. Overview of the PullSDK Interfaces

The PullSDK interfaces are a group of functions, which are used to access the data of the C3 and C4 access

control panels. PullSDK enables the developers of final application programs to access the access control

panel more visually, conveniently, and concisely. The PullSDK interface provides the following functions:

Read and set the controller parameters

Read, set, and delete the related information (for example, time segment, user information, and holiday

information) of the controller

Search for and modify the device information

2. Description of the PullSDK Interface Technology

In the eyes of the developers of final application programs, the PullSDK interfaces are a group of extract

interfaces that are used to set and get the data in the access control panel. It seems that the developers are

using the most universal SQL sentences while accessing the user data. In the eyes of the developers of

application programs, the PullSDK interfaces seem to be a database server.

The PullSDK interfaces support the TCP/IP and RS485 communication protocol.

The PullSDK interfaces are developed by using the C language. Data communication is highly optimized,

thus turning the PullSDK interfaces into the concise and efficient access interfaces.

Initially, the PullSDK interfaces are designed by referring to the SQL, but the most commonly used service

model is the first consideration. Generally, the PullSDK interfaces are a group of elaborately abstracted

interfaces, which attain a good balance between design, implementation, and use.

3. Installation of the PullSDK Interface

The PullSDK interface functions are contained in the plcommpro.dll file, which relies upon several other

files. You need to copy the following five DLL files together to the system directory under Windows

(windows/system32 under Windows XP).

(Note: Attached table 1 describes the functions of every file).

1

PullSDK Interfaces User Guide

4. Detailed Description of the PullSDK Interface Functions

4.1 Connect

[Function]

int Connect(const char *Parameters)

[Objective]

The function is used to connect a device. After the connection is successful, the connection handle is

returned.

[Parameter description]

Parameters:

[in]: Specify the connection options through the parameter, for example:

"protocol=RS485,port=COM2,baudrate=38400bps,deviceid=1,timeout=50000, passwd=”;

“protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=4000,passwd=”;

To connect a device, the system needs to transfer the device-related connection parameters.

protocol indicates the protocol used for communication. At present, RS485 and TCP can be used.

port: Communication port of the device. For example, if the RS485 protocol is used, you can set port to

COM1: If the TCP is used, the default port is 4370 unless otherwise noted.

deviceid: Device ID used by the serial port.

baudrate: Baud rate used for the communication of the communication of the serial port.

ipaddress: IP address of the related device for TCP/IP communication.

timeout: Timeout time of the connection (unit: ms)If the network connection is in poor condition, you

should set the parameter to a larger value. Usually, timeout=5000 (5 seconds) can meet the basic network

needs. When the query result contains the error code of -2, you should set timeout to a larger value, for

example, timeout=20000 (20 seconds).

passwd: Connection password of the communication. If the parameter value is null, it indicates that no

password is used.

(Note: The connection parameters are case-sensitive)

[Returned value]

If the device is connected successfully, the connection handle is returned. Otherwise, the error code of 0 is

returned.

[Example]

Python:

params = “protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=4000,passwd=”

self.commpro = windll.LoadLibrary("plcommpro.dll")

constr = create_string_buffer(params)

self.hcommpro = self.commpro.Connect(constr)

c#:

params = “protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=2000,passwd=” ;

IntPtr h = Connect(params);

2

5. Appendix

4.2 Disconnect

[Function]

Void Disconnect(HANDLE handle)

[Objective]

The function is used to disconnect the device.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

[Returned value]

None

[Example]

Python:

self.commpro.Disconnect(self.hcommpro)

self.hcommpro = 0

c#:

Disconnect(h);

h = IntPtr.Zero;

4.3 SetDeviceParam

[Function]

int SetDeviceParam(HANDLE handle, const char *ItemValues)

[Objective]

The function is used to set the controller parameters, for example, the device ID, door sensor type, driving

time of the lock, and read interval.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Item Values

[in]: The device parameter value to be set; the multiple parameter values can be separated by commas; you

can set at most 20 parameters at a time (Attached table 2 lists the parameter value attributes).

[Returned value]

When the returned value is 0 , it indicates that the operation is successful. When the returned value is a

negative value, it indicates an error. Attached table 5 lists the information about the error codes.

[Example]

Python:

items = ("DeviceID=1,Door1SensorType=2,Door1Drivertime=6,Door1Intertime=3")

p_items = create_string_buffer(items)

ret = self.commpro.SetDeviceParam(self.hcommpro, p_items)

c#:

int ret = 0;

items = ("DeviceID=1,Door1SensorType=2,Door1Drivertime=6,Door1Intertime=3")

ret = SetDeviceParam(h, items);

3

PullSDK Interfaces User Guide

4.4 GetDeviceParam

[Function]

int GetDeviceParam(HANDLE handle, char *Buffer, int BufferSize, const char *Items)

[Objective]

The function is used to read the controller parameters, for example, the device ID, door sensor type,

driving time of the lock, and read interval.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Buffer

[in]: The buffer used to receive the returned data; the returned data is expressed in a text format; if the

returned data is multiple params, the multiple params are separated by commas.

Buffer Size

[in] The size of the buffer used to receive the returned data.

Items

[in]: The parameter names of the device to be read; the multiple parameter names are separated by

commas; you can read at most 30 parameters at a time (Attached table 1 lists the parameter value

attributes).

[Returned value]

When the returned value is 0 , it indicates that the operation is successful. When the returned value is a

negative value, it indicates that the operation fails. Attached table 5 lists the information about the error

codes.

[Example]

Python:

buffer = create_string_buffer(2048)

items = ("DeviceID,Door1SensorType,Door1Drivertime,Door1Intertime")

p_items = create_string_buffer(items)

ret=self.commpro.GetDeviceParam(self.hcommpro, buffer, 256, p_items)

c#:

int ret = 0;

int BUFFERSIZE = 10 * 1024 * 1024;

byte[] buffer = new byte[BUFFERSIZE];

items = ("DeviceID,Door1SensorType,Door1Drivertime,Door1Intertime");

ret = GetDeviceParam(h, ref buffer [0], BUFFERSIZE, items);

4.5 ControlDevice

[Function]

int ControlDevice(HANDLE handle, LONG OperationID, LONG Param1, LONG Param2, LONG

Param3, LONG Param4, const char *Options)

[Objective]

The function is used to control the actions of the controller.

[Parameter description]

4

5. Appendix

handle

[in]: The handle that is returned when the connection is successful.

OperationID

[in] Operation contents: 1 for output, 2 for cancel alarm, 3 for restart device, and 4 for enable/disable

normal open state.

Param1

[in] When the OperationID is output operation: If Param2 is the door output the parameter indicates the

door number. If Param2 is auxiliary output, the parameter indicates the number of the auxiliary output

interface (for details, see Attached table 3). If Param2 is cancel alarm, the parameter value is 0 by default.

Param2

[in]: When the OperationID is output operation, this parameter indicates the address type of the
output point (1 for door output, 2 for auxiliary output), for details, see Attached table 3. When the
OperationID is cancel alarm,, the parameter value is 0 by default. When the OperationID value
is 4, that is enable/disable normal open state, the parameter indicates is enable/disable normal
open state (0 for disable, 1 for enable).
Param3

[in]: When the OperationID is output operation, the parameter indicates the door-opening time (0 indicates

the closed state, 255 indicates the normal open state, the value range is 1 to 60 seconds). The default value

is 0.

Param4

[in] Reserved; the default value is 0.

Option

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful. When the

returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information

about the error codes.

[Example]

Python:

operation_id = 1

door_id = 1

index = 2

state = 6

ret = self.commpro.ControlDevice(self.hcommpro, operation_id, door_id, index, state, 0, ‘’)

c#：

int ret = 0;

int operid = 1;

int doorid = 0;

int outputadr = 0;

int doorstate = 8;

ret = ControlDevice(h, operid, doorid, outputadr, doorstate, 0, "");

5

PullSDK Interfaces User Guide

4.6 SetDeviceData

[Function]

int SetDeviceData(HANDLE handle,const char *TableName, const char *Data, const char *Options)

[Objective]

The function is used to set the device data (for example, the time segment, user information, and holiday

information). The device data can be one or multiple records.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.

Data

[in]: Data record; the data is expressed in a text format; the multiple records are separated by \r\n, and the

“Field=Value” pairs are separated by \t.

Options

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0, it indicates that the operation is successful. When the returned value is a

negative value, it indicates that the operation fails. Attached table 5 lists the information about the error

codes.

[Example]

Python:

table = "user" # User information table

data = "Pin=19999\tCardNo=13375401\tPassword=1\r\nPin=2\tCardNo=14128058\tPassword=1"

p_table = create_string_buffer(table)

str_buf = create_string_buffer(data)

ret = self.commpro.SetDeviceData(self.hcommpro, p_table, str_buf, ‘’) # Upload the str_buf data

to the user information table

c#：

int ret = 0;

string devtablename = "user";

string data = "Pin=19999\tCardNo=13375401\tPassword=1\r\nPin=2\tCardNo=14128058\tPassword=1";

string options = "";

ret = SetDeviceData(h, devtablename, data, options);

4.7 GetDeviceData

[Function]

int GetDeviceData(HANDLE handle, char *Buffer, int BufferSize, const char *TableName, const char

*FieldNames,const char *Filter, const char *Options)

[Objective]

The function is used to read the device data (for example, the punch records, time segment, user

information, and holiday information). The data can be one or multiple records.

6

5. Appendix

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Buffer

[in]: The buffer used to receive the returned data; the returned data is expressed in a text format; if the

returned data is multiple records, the multiple records are separated by \r\n.

BufferSize

[in] The size of the buffer used to receive the returned data.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.

FieldNames

[in]: Field name list; the multiple fields are separated by semicolons; * indicates all fields, and the first line

in the returned data field is the field names.

Filter

[in]: The conditions of reading the data; the character string in the format of “field name, operator, value”

can support multiple conditions, which are separated by commas; for example:

<Field name>=<Value>(no space is allowed at two sides of =)

Options

[in]: Only used to download data of the access control records event effectively at present; when the parameter

value is New Record, new records are downloaded. When the value is null, all records are downloaded. When do

wnload the other table data, this field can set to an empty string.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful (the returned

value indicates the number of records). When the returned value is a negative value, it indicates that the

operation fails. Attached table 5 lists the information about the error codes.

 [Example]

Python:

table = ”user” # Download the user data from the user table

fielname = "*" # Download all field information in the table

pfilter = "” # Have no filtering conditions and thus download all information

options = "”

query_buf = create_string_buffer(4*1024*1024)

query_table = create_string_buffer(table)

query_fieldname = create_string_buffer(fieldname)

query_filter = create_string_buffer(filter)

query_options = create_string_buffer(options)

ret = self.commpro.GetDeviceData(self.hcommpro, query_buf, 4*1024*1024, query_table,

query_fieldname, query_filter, query_options)

c#：

int ret = 0;

int BUFFERSIZE = 10 * 1024 * 1024;

byte[] buffer = new byte[BUFFERSIZE];

string devtablename = "user";

string str = "*";

string devdatfilter = "";

7

PullSDK Interfaces User Guide

string options = "";

ret = GetDeviceData(h, ref buffer[0], BUFFERSIZE, devtablename, str, devdatfilter, options);

4.8 GetDeviceDataCount

[Function]

int GetDeviceDataCount(void *Handle, const char *TableName, const char *Filter,const char *Options)

[Objective]

The function is used to read the total number of records on the device and return the number of records for

the specified data.

[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.

Filter

[in]: The default value is null; it is used for extension.

Options

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful (the returned

value indicates the number of records). When the returned value is a negative value, it indicates that the

operation fails. Attached table 5 lists the information about the error codes.

[Example]

Python:

table = ’user’

filter = ""

p_table = create_string_buffer(table)

p_filter = create_string_buffer(filter)

ret = self.commpro.GetDeviceDataCount(self.hcommpro, p_table, p_filter,’’)

c#：

int ret = 0;

string devtablename = "user";

string devdatfilter = "";

string options = "";

ret = GetDeviceDataCount(h, devtablename, devdatfilter, options);

8

5. Appendix

4.9 DeleteDeviceData

[Function]

int DeleteDeviceData(HANDLE handle, const char *TableName,const char *Data,const char *Options)

[Objective]

The function is used to delete the data (for example, user information and time segment) on the device.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.

Data

[in]: Data record; the data is expressed in a text format; the multiple records are separated by \r\n, and the

“Field=Value” pairs are separated by \t.

Options

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful. When the

returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information

about the error codes.

[Example]

Python:

table = “user”

data = "Pin=2" # Conditions of deleting the data

p_table = create_string_buffer(table)

p_data = create_string_buffer(data)

ret = self.commpro.DeleteDeviceData(self.hcommpro, p_table, p_data, "")

c#：

int ret = 0;

string devtablename = "user";

string data = "Pin=2";

string options = "";

ret = DeleteDeviceData(h, devtablename, data, options);

9

PullSDK Interfaces User Guide

4.10 GetRTLog

[Function]

int GetRTLog(HANDLE handle,char *Buffer, int BufferSize)

[Objective]

The function is used to acquire the realtime event records generated by the equipment and the door status

or alarm status of the equipment.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Buffer

[in] The buffer used to receive the returned data, the returned data is expressed in a text format.

This buffer stores two types of data: realtime event records and door/alarm status. The data returned by this

function can be only one of these types. A realtime event query can return multiple records simultaneously

(which depends on the number of event records in the realtime monitoring buffer on the equipment at that

time). For details of data formats in the buffer, see Attachment 7.

BufferSize

[in]: The size of the buffer used to receive the returned data.

[Returned value]

When the returned value is 0 or a positive value, it indicates the number of records for the received data.

When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the

information about the error codes.

[Example]

Python:

rt_log = create_string_buffer(256)

ret = self.commpro.GetRTLog(self.hcommpro, rt_log, 256)

c#：

int ret = 0;

int buffersize = 256;

byte[] buffer = new byte[256];

ret = GetRTLog(h, ref buffer[0], buffersize);

10

5. Appendix

4.11 SearchDevice

[Function]

int SearchDevice(char *CommType,char *Address, char *Buffer)

[Objective]

The function is used to search for the access control panel in the LAN.

[Parameter description]

CommType

[in]: If the communication type is set to UDP (or Ethernet), all devices of the specified communication

type will be searched.

Address

[in]: Broadcast address; the system searches for the devices in the LAN within the specified IP address

range; the default value is 255.255.255.255, known as network broadcasting.

Buffer

[in]: The buffer is used to save the detected devices. Users should determine the requested memory

according to the number of devices in the corresponding network. For example, if the network has not

more than 50 devices, it is recommended that users should request the memory of 32K; if the network has

not more than 100 devices, it is recommended that users should request the memory of 64K.

[Returned value]

When the returned value is 0 or a positive value, it indicates the number of found access control panels.

When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the

information about the error codes.

[Note]

This approach is intended to search for access controllers on a LAN in UDP broadcast mode. UDP packets

cannot traverse routers, so an access controller must not be separated from a server by routers. If by this

means you find a device that resides on a different network segment as a server but fail to ping the IP

address of an access controller, you may set the controller and server addresses to be on the same subnet

(not necessarily on the same network segment). For details on network setting, consult related

administrator to obtain correct IP addresses, subnet masks and gateways.

[Example]

Python:

dev_buf = create_string_buffer("", 64*1024)

ret=self.commpro.SearchDevice("UDP", "255.255.255.255", dev_buf)

c#：

int ret = 0;

string udp = "UDP";

string adr = "255.255.255.255";

byte[] buffer = new byte[64 * 1024];

ret = SearchDevice(udp,adr, ref buffer[0]);

11

PullSDK Interfaces User Guide

 4.12 ModifyIPAddress

[Function]

int ModifyIPAddress(char *CommType,char *Address, char *Buffer)

[Objective]

The function is used to modify the IP addresses of controllers through the UDP broadcast method. For

security purposes, only the IP addresses, subnets, and gateways of the access controllers with no passwords

specified can be modified.

[Parameter description]

CommType

[in]: Communication modes employed in search of access controllers: UDP (or Ethernet) in this example.

Address

[in]: Broadcast address; the default value is 255.255.255.255.

Buffer

[in]: The buffer is used to save the MAC addresses and new IP addresses of the target device.

Configure subnet masks and gateways according to current network, except for IP addresses.

[Returned value]

When the returned value is 0 or a positive value, it indicates the number of records for the received data.

When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the

information about the error codes.

[Example]

Python:

mac = '00:17:61:01:88:27' # MAC address of the target device

new_ip = '192.168.12.156' # New IP address of the device

comm_pwd = ’’

str = "MAC=%s,IPAddress=%s " % (mac,new_ip)

p_buf = create_string_buffer(str)

modify_ip = self.commpro.ModifyIPAddress(“UDP”, “255.255.255.255”, p_buf)

c#：

int ret = 0;

string udp = "UDP";

string address = "255.255.255.255";

string buffer = "MAC=00:17:61:01:88:27" + "," + "IPAddress=192.168.12.156";

ret = ModifyIPAddress(udp,address,buffer);

12

5. Appendix

4.13 PullLastError

[Function]

int PullLastError()

[Objective]

The function is used to Obtain the returned error code. If an error code return fails by using other error

codes, this function can be called to obtain the error code. For example, if 0 is returned when an equipment

connection fails by calling Connect(), you can run this function to obtain current error code.

[Parameter description]

None

[Returned value]

Error ID.

[Example]

Python:

See the new contents below.

params= u"protocol=TCP,ipaddress=192.168.1.201,port=4370,timeout=3000,passwd=123abc"

constr = create_string_buffer(params)

self.hcommpro = self.commpro.Connect(constr)

if self.hcommpro > 0:

self.connected = True

else:

 error = self.commpro.PullLastError()

c#：

int ret = 0; // Error code

string str = "

protocol=TCP,ipaddress=192.168.1.201,port=4370,timeout=3000,passwd=123abc ";

 h = Connect(str);

 if (h != IntPtr.Zero)

 {

 MessageBox.Show("Connect device succeed!");

 }

 else

 {

 ret = PullLastError();

 MessageBox.Show("Connect device Failed! The error code is: " + ret);

 }

13

PullSDK Interfaces User Guide

4.14 SetDeviceFileData

[Function]

int SetDeviceFileData(void *Handle, const char *FileName, char *Buffer,int BufferSize,const char

*Options)

[Objective]

The function is used to transfer a file from the PC to the device. It mainly used to transfer the updade file.

The updade file name is emfw.cfg.

[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.

FileName

[in]: The name of the file transferred to the device, for example, a emfw.cfg file.

Buffer

[in]: The data buffer used to transfer a file.

BufferSize

[in] Length of the transferred data.

Options

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful. When the

returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information

about the error codes.

[Example]

Python:

file_name = ”emfw.cfg”

buff_len = len(file_name)

pfile_name = create_string_buffer(file_name)

pbuffer = create_string_buffer(buff_len)

ret = self.commpro.SetDeviceFileData(self.hcommpro, pfile_name, pbuffer, buff_len, "")

c#：

int ret = 0;

string filename = "emfw.cfg ";

FileStream fsFile = File.OpenRead(this.openFileDialog1.FileName);

string buffersize = (int)fsFile.Length;

byte[] buffer = new byte[buffersize];

string options = "";

ret = SetDeviceFileData(h, filename, ref buffer[0], buffersize, options);

14

5. Appendix

4.15 GetDeviceFileData

[Function]

int GetDeviceFileData(void *Handle,char *Buffer,int *BufferSize,const char *FileName,const char

*Options)

[Objective]

The function is used to obtain a file from the device to the PC. It can obtain user file, record file and etc.

[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.

FileName

[in] The name of the file obtained from the device, for example, the user file’s name is user.dat, record

file’s name is transaction.dat.

Buffer

[in]: Buffer used to receive the data.

BufferSize

[in]: Length of the received data.

Options

[in]: The default value is null; it is used for extension.

[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful. When the

returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information

about the error codes.

[Example]

Python:

file_name = ”user.dat”

pfile_name = create_string_buffer(file_name)

pbuffer = create_string_buffer(4*102*1024)

ret = self.commpro.GetDeviceFileData(self.hcommpro, pbuffer, buff_len, pfile_name, "")

c#：

int ret = 0;

int buffersize = 4 * 1024 * 1024;

byte[] buffer = new byte[buffersize];

string filename = "user.dat";

string options = "";

ret = GetDeviceFileData(h, ref buffer[0], ref buffersize, filename, options);

15

PullSDK Interfaces User Guide

4.16 ProcessBackupData

[Function]

int ProcessBackupData(const unsigned char *revBuf, int fileLen, char *outBuf,

int outSize)

[Objective]

The files used for processing equipment backup files, for example, backup files in an SD card.

[Parameter description]

revBuf
[in] The uploaded files;
 fileLen
[in] The file length;

outBuf
[in] To receive the returning data;

 outsize
[in] The max length of the receiving data.

 [Returned value]

The returning value is 0 or positive number for success operation. Otherwise, the operation is
failed. For the error codes, please refer to the Appendix 5.
[Example]

Python ：
filename = “sddata.dat”

buff_len = len(filename)

buf = create_string_buffer(filename)

buffer = create_string_buffer(16*1024*1024)

ret = self.commpro. ProcessBackupData(buf, buff_len, ref buffer[0], 16 * 1024 * 1024)

c# ：
byte[] buffer = new byte[16 * 1024 * 1024];

 byte[] buf = new byte[16 * 1024 * 1024];

 int BufferSize = 0;

 int ret = -1;

string filename = "user.dat";

 StreamReader proFile = new StreamReader(filename);

 BufferSize = proFile.BaseStream.Read(buf, 0, 16 * 1024 * 1024);

 ret = ProcessBackupData(buf, BufferSize, ref buffer[0], 16 * 1024 * 1024);

16

5. Appendix

5. Appendix

5.1 Attached Table 1: Detailed Description of Interface Files

File Name Description

plcommpro.dll Dynamic connection database interface of the PullSDK function

plcomms.dll Database on which the PullSDK interfaces rely

plrscomm.dll Database on which the PullSDK interfaces rely

pltcpcomm.dll Database on which the PullSDK interfaces rely

rscagent.dll Database on which the PullSDK interfaces rely

5.2 Attached Table 2: Description of Controller Parameters

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

Number of doors LockCount Read only
The number of locks on the control

board.

Number of readers ReaderCount Read only
Only indicates the number of

Wiegand standard readers.

Customized input quantity AuxInCount Read only

Customized output quantity AuxOutCount Read only

Communication Password ComPwd
Read/writ

e

Default: null character string.

Maximum: 15-bit characters

(including digits and letters).

IP Address IPAddress
Read/writ

e
Default: 192.168.1.201

Gateway GATEIPAddress
Read/writ

e
Default value is IPAddres

BaudRate RS232BaudRate
Read/writ

e
Default: 38400

Subnet mask NetMask
Read/writ

e
Default: 255.255.255.0

Anti-passback rule

(Door 1 and Door 2 each

other is anti-passback, when

Door 2 will be opened before

Door 1 has opened , and Door

1 can’t open two consecutive

door)

AntiPassback Read/writ

e

One-door and two-way controller

1:Enable the anti-passback function

between the readers of Door 1

Two-door and single-way controller

1: Enable the anti-passback function

between Door 1 and Door 2

Two-door and two-way controller

1: Enable the anti-passback function

between the readers of Door 1

17

PullSDK Interfaces User Guide

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

2: Enable the anti-passback function

between the readers of Door 2

3: Enable the anti-passback function

between the readers of Door 1 and

between the readers of Door 2

respectively

4: Enable the anti-passback function

between Door 1 and Door 2

Four-door and single-way controller

1: Enable the anti-passback function

between Door 1 and Door 2

2: Enable the anti-passback function

between Door 3 and Door 4

3: Enable the anti-passback function

between Door 1 and Door 2, and

between Door 3 and Door 4

4: Enable the anti-passback function

between Door 1,2 and Door 3,4

5: Enable the anti-passback function

between Door 1 and Door 2,3

6: Enable the anti-passback function

between Door 1 and Door 2,3,4

16: denotes that only supports anti-

passback function between the

readers of Door 1

32: denotes that only supports anti-

passback function between the readers

of Door 2

64: denotes that only supports anti-

passback function between the readers

of Door 3

128: denotes that only supports anti-

passback function between the readers of

Door 4

Other options:

48: denotes that Door1 and 2

support concurrent anti-passback

among their respective readers.

80: denotes that Door1 and 3

support concurrent anti-passback

among their respective readers.

18

5. Appendix

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

144: denotes that Door1 and 4

support concurrent anti-passback

among their respective readers.

96: denotes that Door2 and 3

support concurrent anti-passback

among their respective readers.

160: denotes that Door2 and 4

support concurrent anti-passback

among their respective readers.

196: denotes that Door3 and 4

support concurrent anti-passback

among their respective readers.

112: denotes that Door1, 2, and 3

support concurrent anti-passback among

their respective readers.

176: denotes that Door1, 2, and 4

support concurrent anti-passback among

their respective readers.

208: denotes that Door1, 3, and 4

support concurrent anti-passback among

their respective readers.

224: denotes that Door2, 3, and 4

support concurrent anti-passback among

their respective readers.

240: denotes that Door1, 2, 3 and 4

support concurrent anti-passback among

their respective readers.

(Choose and configure the preceding

options as required)

Interlock

(Door 1 and Door 2 each

other is interlock. When the

Door 1 in the opening , the

Door 2 can only be turned off.

Instead the Door 2 is opened,

the Door 1 can not be

opened.)

InterLock Read/writ

e

Two-door controller

1: Interlock Door 1 and Door 2

mutually

Four-door control

1: Interlock Door 1 and Door 2

mutually

2: Interlock Door 3 and Door 4

mutually

3: Interlock Door 1, Door 2 and

Door 3 mutually

4: Interlock Door 1 and Door 2

19

PullSDK Interfaces User Guide

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

mutually, and interlock Door 3 and

Door 4 mutually

5: Interlock Door 1, Door 2, Door 3

and Door 4 mutually

Duress Password

Door1ForcePassWord

Door2ForcePassWord

Door3ForcePassWord

Door4ForcePassWord

Read/writ

e
Max: 8 digits

Emergency Password

Door1SupperPassWor

d

Door2SupperPassWor

d

Door3SupperPassWor

d

Door4SupperPassWor

d

Read/writ

e
Max: 8 digits

Lock at door closing

Door1CloseAndLock

Door2CloseAndLock

Door3CloseAndLock

Door4CloseAndLock

Read/writ

e

1: Enabled

0: Disabled

Door sensor type

Door1SensorType

Door2SensorType

Door3SensorType

Door4SensorType

Read/writ

e

0: Not available

1: Normal open

2: Normal closed

Lock driver time length

Door1Drivertime

Door2Drivertime

Door3Drivertime

Door4Drivertime

Read/writ

e

The value range is 0 to 255.

0: Normal closed

255: Normal open

1 to 254: Door-opening duration

Timeout alarm duration of

door magnet

Door1Detectortime

Door2Detectortime

Door3Detectortime

Door4Detectortime

Read/writ

e

The value range is 0 to 255.

Unit: second

Verify mode

Door1VerifyType

Door2VerifyType

Door3VerifyType

Door4VerifyType

Read/writ

e

1:Fingerprint

4: Card

6:Card or fingerprint

10:Card and fingerprint

11: Card and password

Multi-card opening

(The Door can be opened by

more than one person through

Door1MultiCardOpenD

oor

Door2MultiCardOpenD

oor

Read/write 0: Disabled

1: Enabled

20

5. Appendix

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

verified by, In Attached table

4<Multi-card opening table

> set group number of multi-

card to open the door , Person

in the group which is more

than one authentication, set

most five people.)

Door3MultiCardOpenD

oor

Door4MultiCardOpenD

oor

Opening the door through the

first card

Door1FirstCardOpenDo

or

Door2FirstCardOpenDo

or

Door3FirstCardOpenDo

or

Door4FirstCardOpenDo

or

Read/writ

e

0: Disabled

1: First-card normal open

Active time segment of the

door (time segment in which a

valid punch)

Door1ValidTZ

Door2ValidTZ

Door3ValidTZ

Door4ValidTZ

Read/writ

e
Default: 0 (the door is not activated)

Normal-open time segment of

the door

Door1KeepOpenTimeZo

ne

Door2KeepOpenTimeZo

ne

Door3KeepOpenTimeZo

ne

Door4KeepOpenTimeZo

ne

Read/writ

e

Default: 0 (the parameter is not set)

Punch interval

Door1Intertime

Door2Intertime

Door3Intertime

Door4Intertime

Read/writ

e
0 means no interval (unit: second)

MCU Watchdog WatchDog
Read/writ

e

0: Disabled

1: Enabled

4 doors turn 2 doors Door4ToDoor2
Read/writ

e

0: Disabled

1: Enabled

The date of Cancel Normal

Open

Door1CancelKeepOpen

Day

Door2CancelKeepOpen

Day

Door3CancelKeepOpen

Day

Read only

21

PullSDK Interfaces User Guide

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

Door4CancelKeepOpen

Day

The time of backup SD card BackupTime Read/writ The value range are 1 to 24

Reboot the device Reboot Write only Reboot=1

Synchronization time DateTime Write only

DateTime= ((Year-2000)*12*31 +

(Month -1)*31 + (Day-1))*(24*60*60)

+ Hour* 60 *60 + Minute*60 +

Second;

For example, the now datetime is 2010-

10-26 20:54:55, so DateTime=

347748895;

And calculate the reverse “DateTime =

347748895”;

Second = DateTime % 60；

Minute = (DateTime / 60) % 60 ；

Hour = (DateTime / 3600) % 24 ；

Day = (DateTime / 86400) % 31 +

1 ；

Month= (DateTime / 2678400) % 12

+ 1 ；

Year = (DateTime / 32140800) +

2000；

Door4 turn to Door2 Door4ToDoor2
Read/writ

e

0: Disabled

1: Enabled

One-way / two-way Reader InBIOTowWay
Read/writ

e

0: One-way

1: Two-way

Device fingerprint identification

version
~ZKFPVersion Read only

9: 9.0 version

10: 10.0 version

Display parameters of

daylight saving time
~DSTF

Read/writ

e

0: Never Show(default)

1: show

Enablement parameters of

daylight saving time

DaylightSavingTimeO

n

Read/writ

e

0: Never start(default)

1: sart

Enable mode of daylight

saving time
DLSTMode

Read/writ

e

0: mode 1

1: mode 2

Mode of daylight saving time

一Start time
DaylightSavingTime

Read/writ

e

The value have 4 bytes: “month-

date-hour-minute”

Mode of daylight saving time

一 Over time
StandardTime

Read/writ

e

The value have 4 bytes: “month-

date-hour-minute”

Mode 2 of daylight saving

time：Month
WeekOfMonth1

Read/writ

e
The value range are 1 to 12

22

5. Appendix

Attribute Name Parameter
Read/Writ

e Type
Remarks

SerialNumber of device ~SerialNumber Read only

The begin week of daylight

saving time Mode 2：XX

week

WeekOfMonth2
Read/writ

e
The value range are 1 to 6

The begin day of daylight

saving time Mode 2 ： XX

(Sunday to Saturday)

WeekOfMonth3
Read/writ

e
The value range are 1 to 7

The begin of daylight saving

time Mode 2 ： Hour
WeekOfMonth4

Read/writ

e
The value range are 0 to 23

The begin of daylight saving

time Mode 2 ：minute
WeekOfMonth5

Read/writ

e
The value range are 0 to 59

The end of daylight saving

time Mode 2 ：Month
WeekOfMonth6

Read/writ

e
The value range are 1 to 12

The end week of daylight

saving time Mode 2 ： XX

week

WeekOfMonth7
Read/writ

e
The value range are 1 to 6

The end day of daylight

saving time Mode 2 ：

XX(Sunday to Saturday)

WeekOfMonth8
Read/writ

e
The value range are 1 to 7

The end of daylight saving

time Mode 2 ： Hour
WeekOfMonth9

Read/writ

e
The value range are 0 to 23

The end of daylight saving

time Mode 2 ：Minute
WeekOfMonth10

Read/writ

e
The value range are 0 to 59

23

PullSDK Interfaces User Guide

5.3 Attached Table 3: Description of ControlDevice Parameters

OperationID
Descriptio

n
Param1 Param2 Param3 Param4 Options

1
Output

operation

Door number

or auxiliary

output

number

1: Door

ouptput

2: auxiliary

output （t

he address

type of

output

operation

）

0: disable

255: normal

open state

1~60: normal

open or the

duration of

normal open

（If

Param2=1, the

value of

Param3 makes

sense ）

reserve

d

Expansi

on

paramete

r is null

2
Cancel

alarm
0 （ null ）

0 （ null

）
0 （ null ）

reserve

d

Expansi

on

paramete

r is null

3
Restart

device
0 （ null ）

0 （ null

）
0 （ null ）

reserve

d

Expansi

on

paramete

r is null

4

Enable/dis

able

normal

open state

Door number
0: disable

1: enable
0 （ null ）

reserve

d

Expansi

on

paramete

r is null

Note: If OperationID=1, Param2 determine the Param1 value is door number or auxiliary output number.

If Param1 is door number, the max value is the door number that the device permitted. If the Param1 is

auxiliary output number, the max value is the auxiliary output number that the device permitted.

24

5. Appendix

5.4 Attached Table 4: Description of Structure of Function Tables

Table Name TableName Field Remarks

Card

number

information

table

user
CardNo, Pin, Password, Group,

StartTime, EndTime

The StartTime and EndTime should be

specified in a correct format.

YYYYMMDD; for example: 20100823;

Group indicates the personnel group of

multi-card verifycation.

Access

privilege list

userauthoriz

e

Pin, AuthorizeTimezoneId,

AuthorizeDoorId

AuthorizeDoorId is authorized by the

door:

1 denotes LOCK1

2 denotes LOCK2

3 denotes LOCK1 and LOCK2

4 denotes LOCK3

5 denotes LOCK1 and LOCK3

6 denotes LOCK2 and LOCK3

7 denotes LOCK1, LOCK2, LOCK3

8 denotes LOCK4

9 denotes LOCK1 and LOCK4

10 denotes LOCK2 and LOCK4

11 denotes LOCK1, LOCK2, LOCK4

12 denotes LOCK3 and LOCK4

13 denotes LOCK1, LOCK3, LOCK4

14 denotes LOCK2, LOCK3, LOCK4

15 denotes LOCK1, LOCK2, LOCK3

and LOCK4.

Assume that four doors are numbered

1, 2, 3, and 4 respectively, then:

1<<(1-1)+1<<(2-1)+1<<(3-1)+1<<(4-

1)=15

or (1111)2 = (15)10

Holiday

table
holiday Holiday, HolidayType, Loop

The HolidayType value can be 1, 2, and

3.

Loop value: 1 (loop by year), 2 (not loop

by year)

25

PullSDK Interfaces User Guide

Table Name TableName Field Remarks

Time zone

table
timezone

TimezoneId,

SunTime1, SunTime2,

SunTime3,

MonTime1, MonTime2,

MonTime3,

TueTime1, TueTime2,

TueTime3,

WedTime1, WedTime2,

WedTime3,

ThuTime1, ThuTime2,

ThuTime3,

FriTime1, FriTime2, FriTime3,

SatTime1, SatTime2, SatTime3,

Hol1Time1, Hol1Time2,

Hol1Time3,

Hol2Time1, Hol2Time2,

Hol2Time3,

Hol3Time1, Hol3Time2,

Hol3Time3

The Time format is as follows:

(hour*100 + minute)<<16+(hour*100 +

minute)

For example: set 8:30–12:30 on Monday

as time segment 1, so the value is

MonTime1=54396110:

8:30 → 8*100+30 → 33E (Hex)

12:30 → 12*100+30 → 4CE (Hex)

033E04CE → 54396110 (Decimal)

Access

control

record table

transaction

Cardno, Pin, Verified, DoorID,

EventType, InOutState,

Time_second

The Verified mode can be as follows:

1:Only finger

3: Only password

4: Only card

11: Card and password

200: Others

Time_second should be specified in a

correct format: YYYY-MM-DD

hh:mm:ss

(After writing, data formats will conversio

n, if want to take out to analysis, analytical

formula is as follows:

second = t % 60;

t /= 60;

minute = t % 60;

t /= 60;

hour = t % 24;

t /= 24;

day = t % 31 + 1;

t /= 31;

month = t % 12 + 1;

t /= 12;

 year = t + 2000);

The EventType, See Attachment 6

26

5. Appendix

Table Name TableName Field Remarks

First-card

door-

opening

table

firstcard Pin, DoorID, TimezoneID

Multi-card

opening

table

multicard
Index, DoorId, Group1, Group2,

Group3, Group4, Group5

Group 1 to Group 5 are the numbers of the

multi-card opening groups

Linkage

control I/O

table

(When the

trigger

condition is

detected and

immediately

start the

other

events)

For

example:

Open the

door 1 is

detected

(trigger

conditions),

the

immediate

alarm, open

the video

surveillance

, close the

door 2, door

3, door 4,

etc. (other

events)

inoutfun

Index, EventType, InAddr,

OutType, OutAddr, OutTime,

Reserved

For details on EventTypes, see the types

of access control record lists.

When the EventType value is 220 (the

auxiliary input point is off) or 221 (the

auxiliary input point is short-circuited), the

input point is the auxiliary input. When the

EventType value is not 220 or 221, the

input point is a door.

The input point InAddr is a door:

0: Any door

1: Door 1

2: Door 2

3: Door 3

4: Door 4

The input point InAddr is the auxiliary

input:

0: Any auxiliary input

1: Auxiliary input 1

2: Auxiliary input 2

3: Auxiliary input 3

4: Auxiliary input 4

When the OutType value is 0, the output

point OutAddr indicates a lock:

1: Lock 1

2: Lock 2

3: Lock 3

4: Lock 4

When the OutType value is 1, the output

point OutAddr indicates the auxiliary

output:

1: Auxiliary output 1

2: Auxiliary output 2

3: Auxiliary output 3

4: Auxiliary output 4

5: Auxiliary output 5

6: Auxiliary output 6

27

PullSDK Interfaces User Guide

Table Name TableName Field Remarks

templatev10

table

templatev1

0

Size 、UID、 PIN 、FingerI

D、Valid、 Template 、Resv

erd 、EndTag

Note: The fields in the table are case-sensitive.

5.5 Attached Table 5: Description of Error Codes in the Returned Values

（ 1 ）Error Code of PullSDK and Firmware By provided

Error Code Description

-1 The command is not sent successfully

-2 The command has no response

-3 The buffer is not enough

-4 The decompression fails

-5 The length of the read data is not correct

-6 The length of the decompressed data is not consistent with the expected length

-7 The command is repeated

-8 The connection is not authorized

-9 Data error: The CRC result is failure

-10 Data error: PullSDK cannot resolve the data

-11 Data parameter error

-12 The command is not executed correctly

-13 Command error: This command is not available

-14 The communication password is not correct

-15 Fail to write the file

-16 Fail to read the file

-17 The file does not exist

-99 Unknown error

-100 The table structure does not exist

-101 In the table structure, the Condition field does not exit

-102 The total number of fields is not consistent

-103 The sequence of fields is not consistent

-104 Real-time event data error

-105 Data errors occur during data resolution.

-106 Data overflow: The delivered data is more than 4 MB in length

-107 Fail to get the table structure

-108 Invalid options

-201 LoadLibrary failure

-202 Fail to invoke the interface

-203 Communication initialization fails

-206
Start of a serial interface agent program fails and the cause generally relies in

inexistence or occupation of the serial interface.

-301 Requested TCP/IP version error

28

5. Appendix

Error Code Description

-302 Incorrect version number

-303 Fail to get the protocol type

-304 Invalid SOCKET

-305 SOCKET error

-306 HOST error

-307 Connection attempt failed

（ 2 ） WinSocket Error Codes

10035

Resources temporarily unavailable.

This error is returned from operations on nonblocking sockets that cannot be

completed immediately, for example, recv (Wsapiref_2i9e.asp) when no data is

queued to be read from the socket. It is a non-fatal error, and the operation

should be retried later. It is normal for WSAEWOULDBLOCK to be reported

as the result from calling connect on a nonblocking SOCK_STREAM socket

(Wsapiref_8m7m.asp), since some time must elapse for the connection to be

established.

10038

An operation was attempted on something that is not a socket. Ether the socket

handle parameter did not reference a valid socket, or for select, a member of an

fd_set was no valid.

10054

Connection reset by peer.

An existing connection was forcibly closed by the remote host. This normally

results if the peer application on the remote host is suddenly stopped, the host

is rebooted, the host or remote network interface is disabled, or the remote host

uses a hard close (See setsockopt (Wsapiref_94aa.asp) for more information on

the SO_LINGER option on the remote socket). This error may also result if a

connection was broken due to keep-alive activity detecting a failure while one

or more operations are in progress. Operations that were in progress fail with

WSAENETRESET. Subsequent operations fail with WSAECONNRESET.

10060

Connection timed out.

A connection attempt failed because the connected party did not properly

respond after a period of time, or established connection failed because

connected host has failed to respond.

10061

Connection refused.

No connection could be made because the target machine actively refused it.

This usually results from trying to connect to a server that is inactive on the

foreign host — that is, one with no server application running.

10065

No route to host.

A socket operation was attempted to an unreachable host. See

WSAENETUNREACH.

29

PullSDK Interfaces User Guide

5.6 Attached Table 6: Description of Event Types and Code

Code Event Types Description

0 Normal Punch Open

In [Card Only] verification mode, the person has open

door permission punch the card and triggers this normal

event of open the door.

1
Punch during Normal Open Time

Zone

At the normally open period (set to normally open period

of a single door or the door open period after the first

card normally open), or through the remote normal open

operation, the person has open door permission punch the

effective card at the opened door to trigger this normal

events.

2
First Card Normal Open (Punch

Card)

In [Card Only] verification mode, the person has first

card normally open permission, punch card at the setting

first card normally open period but the door is not

opened, and trigger the normal event.

3 Multi-Card Open (Punching Card)

In [Card Only] verification mode, multi-card combination can

be used to open the door. After the last piece of card verified,

the system trigger this normal event.

4 Emergency Password Open

The password (also known as the super password) set for the

current door can be used for door open. It will trigger this

normal event after the emergency password verified.

5
Open during Normal Open Time

Zone

If the current door is set a normally open period, the door

will open automatically after the setting start time, and

trigger this normal event.

6 Linkage Event Triggered
When the linkage setting the system takes effect, trigger

this normal event.

7 Cancel Alarm
When the user cancel the alarm of the corresponding door, and

the operation is success, trigger this normal event.

8 Remote Opening
When the user opens a door from remote and the

operation is successful, it will trigger this normal event.

9 Remote Closing
When the user close a door from remote and the

operation is successful, it will trigger this normal event.

10
Disable Intraday Normal Open Time

Zone

When the door is in Normally Open (NO) state, swipe

your valid card five times through the reader or call

ControlDevice to disable the NO period on that day. In

this case, trigger this normal event.

11
Enable Intraday Normal Open Time

Zone

When the door’s NO period is disabled, swipe your valid

card (held by the same user) five times through the reader

or call ControlDevice to enable the NO period on that

day. In this case, trigger this normal event.

12 Open Auxiliary Output If the output point address is set to a specific auxiliary

30

5. Appendix

output point and the action type is set enabled in a

linkage setting record, then this normal event will be

triggered as long as this linkage setting takes effect.

13 Close Auxiliary Output
Events that are triggered when you disable the auxiliary input

through linkage operations or by calling ControlDevice.

14 Press Fingerprint Open

Normal events that are triggered after any person

authorized to open the door presses his fingerprint and

passes the verification in “Fingerprint only” or

“Card/Fingerprint” verification modes.

15 Multi-Card Open (Press Fingerprint)

Multi-card open(Fingerprint required): normal events

that are triggered when the last person opens the door

with his fingerprint in “Finger print” verification mode.

16
Press Fingerprint during Normal

Open Time Zone

Normal events that are triggered after any person

authorized to open the door presses his valid fingerprint

during the NO duration (including the NO durations set

for single doors and the first-card NO duration) and

through remote operations.

17 Card plus Fingerprint Open

Normal events that are triggered after any person

authorized to open the door swipes his card and presses

his fingerprint to pass the verification in the “Card +

Fingerprint” verification mode.

18
First Card Normal Open (Press

Fingerprint)

Normal events that are triggered after any person authorized to

open the door becomes the first one to press his fingerprint and

pass the verification during the preset first-card NO duration

and in either the “Fingerprint only” or the “Card/Fingerprint”

verification mode.

19
First Card Normal Open (Card plus

Fingerprint)

Normal events that are triggered after any person

authorized to open the door becomes the first one to

swipe his card and press his fingerprint to pass the

verification during the preset first-card NO duration and

in the “Card + Fingerprint” verification mode.

20 Too Short Punch Interval
When the interval between two card punching is less than the

interval preset for the door, trigger this abnormal event.

21
Door Inactive Time Zone (Punch

Card)

In [Card Only] verification mode, the user has the door open

permission, punch card but not at the door effective period of

time, and trigger this abnormal event.

22 Illegal Time Zone

The user with the permission of opening the current door,

punches the card during the invalid time zone, and triggers this

abnormal event.

23 Access Denied

The registered card without the access permission of the

current door, punch to open the door, triggers this abnormal

event.

24 Anti-Passback
When the anti-pass back setting of the system takes effect,

triggers this abnormal event.

31

PullSDK Interfaces User Guide

25 Interlock
When the interlocking rules of the system take effect, trigger

this abnormal event.

26
Multi-Card Authentication

(Punching Card)

Use multi-card combination to open the door, the card

verification before the last one (whether verified or not), trigger

this normal event

27 Unregistered Card
Refers to the current card is not registered in the system, trigger

this abnormal event.

28 Opening Timeout:
The door sensor detect that it is expired the delay time after

opened, if not close the door, trigger this abnormal event

29 Card Expired

The person with the door access permission, punch card to

open the door after the effective time of the access control, can

not be verified and will trigger this abnormal event.

30 Password Error

Use card plus password, duress password or emergency

password to open the door, trigger this event if the

password is wrong.

31
Too Short Fingerprint Pressing

Interval

When the interval between two consecutive fingerprints

is less than the interval preset for the door, trigger this

abnormal event.

32
Multi-Card Authentication (Press

Fingerprint)

In either the “Fingerprint only” or the “Card/Fingerprint”

verification mode, when any person presses his fingerprint to

open the door through the multi-card access mode and before

the last verification, trigger this event regardless of whether the

verification attempt succeeds.

33 Fingerprint Expired

When any person fails to pass the verification with his

fingerprint at the end of the access control duration preset

by himself, trigger this event.

34 Unregistered Fingerprint

Events that are triggered when any fingerprints are not

registered in the system or registered but not

synchronized to the device.

35
Door Inactive Time Zone (Press

Fingerprint)

Abnormal events that are triggered when any person

authorized to open the door presses his fingerprint during

the preset valid duration.

36
Door Inactive Time Zone (Exit

Button)

Abnormal events that are triggered when any person fails

to open the door by pressing the Unlock button during

the preset valid duration.

37
Failed to Close during Normal Open

Time Zone

Abnormal events that are triggered when any person fails

to close the door in NO state by calling ControlDevice.

101 Duress Password Open
Use the duress password of current door verified and triggered

alarm event.

102 Opened Accidentally Except all the normal events (normal events such as user with

door open permission to punch card and open the door,

password open door, open the door at normally open period,

remote door open, the linkage triggered door open), the door

sensor detect the door is opened, that is the door is

32

5. Appendix

unexpectedly opened.

103 Duress Fingerprint Open
Use the duress fingerprint of current door verified and triggered

alarm event.

200 Door Opened Correctly
When the door sensor detects that the door has been properly

opened, triggering this normal event.

201 Door Closed Correctly
When the door sensor detects that the door has been properly

closed, triggering this normal event.

202 Exit button Open
User press the exit button to open the door within the door

valid time zone, and trigger this normal event.

203
Multi-Card Open (Card plus

Fingerprint)

Normal events that are triggered when any person passes

the verification with his card and fingerprint in multi-

card access mode.

204 Normal Open Time Zone Over

After the setting normal open time zone, the door will close

automatically. The normal open time zone include the normal

open time zone in door setting and the selected normal open

time zone in first card setting.

205 Remote Normal Opening
Normal events that are triggered when the door is set to

the NO state for remote opening operations.

206 Device Start
When the device is being activated, this normal event is

triggered.

220 Auxiliary Input Disconnected
When any auxiliary input point breaks down, this normal

event is triggered.

221 Auxiliary Input Shorted
When any auxiliary input point has short circuited, this

normal event is triggered.

255
Actually that obtain door status

and alarm status
See Attachment 7

33

PullSDK Interfaces User Guide

5.7 Formats of Returned Data in Buffer of the GetRTLog Function

When the data in the buffer is resolved and detected to be:

 Multiple realtime event records: separate those records into single ones with “\r\n”.

 Door and alarm status recorded in single entries: separate those single records with a comma

considering that the data of single records is separated with a comma.

When you resolve single records, make adjustments according to bit 4 of the separated data. If bit 4 is 255, this

record contains the door status and alarm status only; otherwise, this record contains realtime event records.

The following table compares the data structures of these two records.

Bit

0
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6

Door/Ala

rm

Status

Tim

e

DSS status

(0: no

DSS; 1:

door

closed; 2:

door open)

Alarm

status

(1:

alarm;

2:

door

openin

g

timeou

t)

Temporar

ily not in

use

255
Temporaril

y not in use

200 (Indicates that

the verification

mode is “none”);

not in use

Realtime

Event

Records

Tim

e

Pin

(Employee

No.)

Card

No.

Door

No.,

namely

lock

number

Event

type

code.

See Att

achment

6 for

details.

Entry/Exit

status:

(0: entry;

1: exit:

2: none)

The verification

mode is the same

as the door

opening mode of

controller

parameters

described in

Attachment 2.

Note:

(1)

The device can temporarily save a maximum of 30 realtime event records. You can call GetRTLog to

check whether the cache contains event records. If so, the device returns all records (30 entries at

most) in the current cache; otherwise, the device returns the door and alarm status events referred

above.

(2)

The door status records contain the open/closed status of current door (on the premise that the DSS is

connected). Additionally, you can judge the current door status through “Door already open” (Event

code: 200) and “Door already closed” (Event code: 201).

(3)

When the record adopts the door/alarm status, the door status contained in all records actually is the door

status (four doors at most) of all doors of the device. 4 bytes are respectively represents four door status,

34

5. Appendix

arranged in an ascending order separately represent doors 1 to 4. For example, if this value is

0x01020001, door No.1 is closed, door No.2 is not configured with the DSS, door No.3 is door opened,

and door No.4 is door closed. Contained in the alarm status (and Opening Timeout) (The Second place)

the same that 4 bytes are respectively represents four door status, behind two place of Each byte

respectively represents whether that have alarm or door open is overtime, arranged in an ascending order

separately represent alarm or door opening timeout. For example, if this value is 0x01020001, door No.1

is closed, door No.3 means door opening timeout, door No.2 and No.4 means alarm.

(4)

When the record adopts “realtime event” status and type of event is Triggered Linkage Event (the code of

type event: 6), the sixth place saved Linkage Event Triggered, and the second is for reuse of Linkage

ID, It have software for the device synchronous linkage setting (usually the linkage in the ID value of

software end database).

35

