PullSDK Interfaces User Guide

Version: 2.0
Support PullSDK 2.2.0.169 and above version
Date: Jan. 2012

About This Manual
This User Guide introduces the interface and function operations of the PullSDK.

Contents

Contents

1. Overview of the PUlISDK INterfaces.......cccoceseesurcssecseisncssesssnssnsssnsssnssssssssssssssssssssssssssasessassasens -1-
2. Description of the PullSDK Interface TeChnology.........ccceiiveiiveiiserisnissnnsssnsssnsssncssneescsssssescssssenens -1-
3. Installation of the PUullSDK INEErface........ccoceeverevercsricseissnnssnnssnisseissensssisssnsssesssssssessssssssssssscsssnsssssses -1-
4. Detailed Description of the PullSDK Interface Functions -2-
N I 00} 111 1< o AU UPRUTUSPT -2-
4.2 DISCOMNNECT....e.ueeueeneeteeeieiesteeteeteestestesteeseesessesseeseensessesseensensesseeseensessesseessensessesseasseesseeennsessnses -3-
4.3 SetDEVICEPATAML.ccuiieieiieieii ettt ettt et ete s st e st e e sseeenseeenseeenneeas -3-
4.4 GetDEVICEPATAIMN.......ceuiiiieiieiieiee ettt ettt sttt e e s beeseeneesnseeesnseesnneeans -4 -
4.5 CONLIOIDEVICE.eeeutieiieiieieeieet ettt ettt ettt e bt et e bt e bt e bt e bt e bt e bt e bt e s beesbeeeeennbeeeeennneeas -4 -
4.6 SEtDEVICEDIALA. ... ccieiieiieiieiete ettt ettt ettt ettt rt et et e et ene et e te e b aeenaeeenneeenn -6-
4.7 GEtDEVICEDALA.ecveeieiieieetieiteiete ettt et ettt esae st e s teeseeneestesseeseensesseeseenseeenaeesnneennnes -6-
4.8 GetDeVICEDAtACOUNL.c.eeieieetieeieierie ettt te sttt et ettt eatetesseeseesaesesseeneensessseeesnseeeseeennns -8-
4.9 DeleteDEVICEDALA.coviiieiieiieiecieeeee ettt ettt sttt ne et e e enteeennaeeneas -9-
410 GEIRTLOZ. ... eevteeiieeiieeiteeite ettt ettt ettt ettt ettt st sat e sabe e st e e e snnbeeenn -10-
411 SEATCHDIEVICE. ... eveeuieieetieiieieetteetete ettt et e te et e et e te e st ensesseeseestensesesseensensesnseeansaeennseesnnes -11-
4.12 MOAIEYIPAAAIESS. ...c.veevieeieieeieeiieeie ettt ettt ettt e sttt e e sesse st enteeasaeeensaeenneeennns -12-
N B I 11 57T 2 o ST -13 -
4.14 SetDeVICEFIIEDAtA.ccveiiiieieeieieie ettt sttt et -14 -
4.15 GetDEVICEFIIEDALA.cueeeieiieeieiieieie sttt sttt sttt enee st e snaeennseeenns -15-
4.16 ProcessBaCKUPDALA..........cccueiiiiiiiiiiciieiieceeee ettt e b e e st a e e e aaree s -16 -
S APPEIUIX.cueiirurinsnrisssersssarsssaressssessssssssassssassssassssassssssssssassssassssasssssssssssssssassssassssssssssssssssssnsssssssssssss -17 -
5.1 Attached Table 1: Detailed Description of Interface Files........ccccoovvevieiieiienienieciecieenne, -17-
5.2 Attached Table 2: Description of Controller Parameters............c.cceevererirverienenesieiereeeneee. -17-
5.3 Attached Table 3: Description of ControlDevice Parameters.............cccoecveeveeieeieecieeneeennne. -24 -
5.4 Attached Table 4: Description of Structure of Function Tables...........cccocovevvieviieniienieennnen.. -25-
5.5 Attached Table 5: Description of Error Codes in the Returned Values..........c.ccccoeevveeviecnnnennn. -28 -
5.6 Attached Table 6: Description of Event Types and Code..........cccoeveieriiriniecieneneeieiee e -30 -
5.7 Formats of Returned Data in Buffer of the GetRTLog Function.............ceceevervrveienrnennnnne -34-

5. Appendix

1. Overview of the PullSDK Interfaces

The PullSDK interfaces are a group of functions, which are used to access the data of the C3 and C4 access
control panels. PullSDK enables the developers of final application programs to access the access control
panel more visually, conveniently, and concisely. The PullSDK interface provides the following functions:
Read and set the controller parameters
Read, set, and delete the related information (for example, time segment, user information, and holiday
information) of the controller

Search for and modify the device information

2. Description of the PullSDK Interface Technology

In the eyes of the developers of final application programs, the PullSDK interfaces are a group of extract
interfaces that are used to set and get the data in the access control panel. It seems that the developers are

using the most universal SQL sentences while accessing the user data. In the eyes of the developers of

application programs, the PullSDK interfaces seem to be a database server.

The PullSDK interfaces support the TCP/IP and RS485 communication protocol.

The PullSDK interfaces are developed by using the C language. Data communication is highly optimized,
thus turning the PullSDK interfaces into the concise and efficient access interfaces.

Initially, the PullSDK interfaces are designed by referring to the SQL, but the most commonly used service
model is the first consideration. Generally, the PullSDK interfaces are a group of elaborately abstracted

interfaces, which attain a good balance between design, implementation, and use.

3. Installation of the PullSDK Interface

The PullSDK interface functions are contained in the plcommpro.dll file, which relies upon several other

files. You need to copy the following five DLL files together to the system directory under Windows
(windows/system32 under Windows XP).

plcommpro. dll | o B
2.2.0. 169 “‘h-' pleomms. d11 plrscagent. d1l
e

3
.

A

v
3

X 4l plrscomm. d11 "ﬁr pltepcomm. d11

(Note: Attached table 1 describes the functions of every file).

PullSDK Interfaces User Guide

4. Detailed Description of the PullSDK Interface Functions

4.1 Connect

[Function]
int Connect(const char *Parameters)
[Objective]
The function is used to connect a device. After the connection is successful, the connection handle is
returned.
[Parameter description]
Parameters:
[in]: Specify the connection options through the parameter, for example:
"protocol=RS485,port=COM?2 baudrate=38400bps,deviceid=1,timeout=50000, passwd="";
“protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=4000,passwd="";
To connect a device, the system needs to transfer the device-related connection parameters.
protocol indicates the protocol used for communication. At present, RS485 and TCP can be used.
port: Communication port of the device. For example, if the RS485 protocol is used, you can set port to
COMI.: If the TCP is used, the default port is 4370 unless otherwise noted.
deviceid: Device ID used by the serial port.
baudrate: Baud rate used for the communication of the communication of the serial port.
ipaddress: IP address of the related device for TCP/IP communication.
timeout: Timeout time of the connection (unit: ms)If the network connection is in poor condition, you
should set the parameter to a larger value. Usually, timeout=5000 (5 seconds) can meet the basic network
needs. When the query result contains the error code of -2, you should set timeout to a larger value, for
example, timeout=20000 (20 seconds).
passwd: Connection password of the communication. If the parameter value is null, it indicates that no
password is used.
(Note: The connection parameters are case-sensitive)
[Returned value]
If the device is connected successfully, the connection handle is returned. Otherwise, the error code of 0 is
returned.
[Example]
Python:
params = “protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=4000,passwd="
self.commpro = windll.LoadLibrary("plcommpro.dll")
constr = create_string_buffer(params)
self.hcommpro = self.commpro.Connect(constr)
c#:
params = “protocol=TCP,ipaddress=192.168.12.154,port=4370,timeout=2000,passwd="";

IntPtr h = Connect(params);

5. Appendix

4.2 Disconnect

[Function]
Void Disconnect(HANDLE handle)
[Objective]
The function is used to disconnect the device.
[Parameter description]
handle
[in]: The handle that is returned when the connection is successful.
[Returned value]
None
[Example]
Python:
self.commpro.Disconnect(self.hcommpro)
self.hcommpro =0
c#:
Disconnect(h);
h = IntPtr.Zero;

4.3 SetDeviceParam

[Function]
int SetDeviceParam(HANDLE handle, const char *ItemValues)

[Objective]

The function is used to set the controller parameters, for example, the device ID, door sensor type, driving
time of the lock, and read interval.

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Item Values
[in]: The device parameter value to be set; the multiple parameter values can be separated by commas; you

can set at most 20 parameters at a time (Attached table 2 lists the parameter value attributes).

[Returned value]
When the returned value is 0 , it indicates that the operation is successful. When the returned value is a

negative value, it indicates an error. Attached table 5 lists the information about the error codes.
[Example]

Python:
items = ("DevicelD=1,Door1SensorType=2,Door1Drivertime=6,Door1Intertime=3")

p_items = create_string_buffer(items)
ret = self.commpro.SetDeviceParam(self.hcommpro, p_items)
cH:
int ret = 0;
items = ("DevicelD=1,Door1SensorType=2,Door1Drivertime=6,Door1Intertime=3")

ret = SetDeviceParam(h, items);

PullSDK Interfaces User Guide

4.4 GetDeviceParam

[Function]

int GetDeviceParam(HANDLE handle, char *Buffer, int BufferSize, const char *Items)
[Objective]
The function is used to read the controller parameters, for example, the device ID, door sensor type,
driving time of the lock, and read interval.
[Parameter description]
handle

[in]: The handle that is returned when the connection is successful.
Buffer

[in]: The buffer used to receive the returned data; the returned data is expressed in a text format; if the
returned data is multiple params, the multiple params are separated by commas.
Buffer Size
[in] The size of the buffer used to receive the returned data.

Items

[in]: The parameter names of the device to be read; the multiple parameter names are separated by
commas; you can read at most 30 parameters at a time (Attached table 1 lists the parameter value
attributes).
[Returned value]

When the returned value is 0 , it indicates that the operation is successful. When the returned value is a
negative value, it indicates that the operation fails. Attached table 5 lists the information about the error
codes.

[Example]

Python:

buffer = create_string_buffer(2048)

items = ("DevicelD,DoorlSensorType,Door1Drivertime,Doorl Intertime")

p_items = create_string_buffer(items)

ret=self.commpro.GetDeviceParam(self.hcommpro, buffer, 256, p_items)

c#:

int ret = 0;

int BUFFERSIZE = 10 * 1024 * 1024;

byte[] buffer = new byte[BUFFERSIZE];

items = ("DevicelD,Doorl1SensorType,Door1Drivertime,Door 1 Intertime");

ret = GetDeviceParam(h, ref buffer [0], BUFFERSIZE, items);

4.5 ControlDevice

[Function]
int ControlDevice(HANDLE handle, LONG OperationID, LONG Paraml, LONG Param2, LONG
Param3, LONG Param4, const char *Options)
[Objective]
The function is used to control the actions of the controller.

[Parameter description]

5. Appendix

handle

[in]: The handle that is returned when the connection is successful.

OperationID

[in] Operation contents: 1 for output, 2 for cancel alarm, 3 for restart device, and 4 for enable/disable
normal open state.

Paraml

[in] When the OperationID is output operation: If Param2 is the door output the parameter indicates the
door number. If Param?2 is auxiliary output, the parameter indicates the number of the auxiliary output
interface (for details, see Attached table 3). If Param?2 is cancel alarm, the parameter value is 0 by default.
Param2

[in]: When the OperationID is output operation, this parameter indicates the address type of the
output point (1 for door output, 2 for auxiliary output), for details, see Attached table 3. When the
OperationlID is cancel alarm,, the parameter value is 0 by default. When the OperationID value
is 4, that is enable/disable normal open state, the parameter indicates is enable/disable normal
open state (0 for disable, 1 for enable).

Param3

[in]: When the OperationID is output operation, the parameter indicates the door-opening time (0 indicates
the closed state, 255 indicates the normal open state, the value range is 1 to 60 seconds). The default value
is 0.

Param4

[in] Reserved; the default value is 0.
Option

[in]: The default value is null; it is used for extension.
[Returned value]

When the returned value is 0 or a positive value, it indicates that the operation is successful. When the
returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information
about the error codes.

[Example]

Python:

operation_id =1

door_id=1

index =2

state = 6
ret = self.commpro.ControlDevice(self.hcommpro, operation_id, door_id, index, state, 0, *”)
cH:

int ret = 0;

int operid = 1;

int doorid = 0;
int outputadr = 0;
int doorstate = §;

ret = ControlDevice(h, operid, doorid, outputadr, doorstate, 0, "");

PullSDK Interfaces User Guide

4.6 SetDeviceData

[Function]
int SetDeviceData(HANDLE handle,const char *TableName, const char *Data, const char *Options)
[Objective]
The function is used to set the device data (for example, the time segment, user information, and holiday
information). The device data can be one or multiple records.
[Parameter description]
handle
[in]: The handle that is returned when the connection is successful.
TableName
[in]: Data table name. Attached table 4 lists the available data tables.
Data
[in]: Data record; the data is expressed in a text format; the multiple records are separated by \r\n, and the
“Field=Value” pairs are separated by \t.
Options
[in]: The default value is null; it is used for extension.
[Returned value]
When the returned value is 0, it indicates that the operation is successful. When the returned value is a
negative value, it indicates that the operation fails. Attached table 5 lists the information about the error
codes.
[Example]
Python:
table = "user" # User information table
data = "Pin=19999\tCardNo=13375401\tPassword=1\r\nPin=2\tCardNo=14128058\tPassword=1"
p_table = create_string_buffer(table)
str_buf = create_string_buffer(data)
ret = self.commpro.SetDeviceData(self.hcommpro, p_table, str_buf, **) # Upload the str_buf data
to the user information table
c#:
int ret = 0;
string devtablename = "user";
string data = "Pin=19999\tCardNo=13375401\tPassword=1\r\nPin=2\tCardNo=14128058\tPassword=1";
string options ="";
ret = SetDeviceData(h, devtablename, data, options);

4.7 GetDeviceData

[Function]

int GetDeviceData(HANDLE handle, char *Buffer, int BufferSize, const char *TableName, const char
*FieldNames,const char *Filter, const char *Options)

[Objective]

The function is used to read the device data (for example, the punch records, time segment, user

information, and holiday information). The data can be one or multiple records.

5. Appendix

[Parameter description]

handle

[in]: The handle that is returned when the connection is successful.

Buffer

[in]: The buffer used to receive the returned data; the returned data is expressed in a text format; if the
returned data is multiple records, the multiple records are separated by \r\n.

BufferSize

[in] The size of the buffer used to receive the returned data.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.
FieldNames

[in]: Field name list; the multiple fields are separated by semicolons; * indicates all fields, and the first line
in the returned data field is the field names.

Filter
[in]: The conditions of reading the data; the character string in the format of “field name, operator, value”
can support multiple conditions, which are separated by commas; for example:

<Field name>=<Value>(no space is allowed at two sides of =)
Options
[in]: Only used to download data of the access control records event effectively at present; when the parameter
value is New Record, new records are downloaded. When the value is null, all records are downloaded. When do
wnload the other table data, this field can set to an empty string.

[Returned value]
When the returned value is 0 or a positive value, it indicates that the operation is successful (the returned

value indicates the number of records). When the returned value is a negative value, it indicates that the

operation fails. Attached table 5 lists the information about the error codes.

[Example]
Python:
table = "user” # Download the user data from the user table
fielname = "*" # Download all field information in the table
pfilter ="” # Have no filtering conditions and thus download all information
options ="”

query_buf = create_string_buffer(4*1024*1024)
query_table = create_string_buffer(table)
query_fieldname = create_string_buffer(fieldname)
query_filter = create_string_buffer(filter)
query_options = create_string_buffer(options)

ret = self.commpro.GetDeviceData(self.hcommpro, query buf, 4%1024*1024, query table,
query_fieldname, query filter, query options)
c#:

int ret = 0;

int BUFFERSIZE = 10 * 1024 * 1024;
byte[] buffer = new byte[BUFFERSIZE];
string devtablename = "user";

string str = "*";

string devdatfilter ="";

PullSDK Interfaces User Guide

string options ="";
ret = GetDeviceData(h, ref buffer[0], BUFFERSIZE, devtablename, str, devdatfilter, options);

4.8 GetDeviceDataCount

[Function]

int GetDeviceDataCount(void *Handle, const char *TableName, const char *Filter,const char *Options)
[Objective]

The function is used to read the total number of records on the device and return the number of records for
the specified data.
[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.
TableName

[in]: Data table name. Attached table 4 lists the available data tables.

Filter

[in]: The default value is null; it is used for extension.

Options

[in]: The default value is null; it is used for extension.
[Returned value]
When the returned value is 0 or a positive value, it indicates that the operation is successful (the returned
value indicates the number of records). When the returned value is a negative value, it indicates that the
operation fails. Attached table 5 lists the information about the error codes.

[Example]

Python:

table = "user’
filter =""

p_table = create_string_buffer(table)

p_filter = create_string_buffer(filter)

ret = self.commpro.GetDeviceDataCount(self.hcommpro, p_table, p_filter,”)

c#:

int ret = 0;

string devtablename = "user";

string devdatfilter ="";

string options ="";

ret = GetDeviceDataCount(h, devtablename, devdatfilter, options);

5. Appendix

4.9 DeleteDeviceData

[Function]

int DeleteDeviceData(HANDLE handle, const char *TableName,const char *Data,const char ¥*Options)
[Objective]

The function is used to delete the data (for example, user information and time segment) on the device.
[Parameter description]
handle

[in]: The handle that is returned when the connection is successful.

TableName

[in]: Data table name. Attached table 4 lists the available data tables.

Data

[in]: Data record; the data is expressed in a text format; the multiple records are separated by \r\n, and the
“Field=Value” pairs are separated by \t.

Options

[in]: The default value is null; it is used for extension.
[Returned value]
When the returned value is 0 or a positive value, it indicates that the operation is successful. When the
returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information
about the error codes.

[Example]

Python:

table = “user”
data = "Pin=2" # Conditions of deleting the data

p_table = create_string_buffer(table)

p_data = create_string_buffer(data)
ret = self.commpro.DeleteDeviceData(self.hcommpro, p_table, p_data, "")
cH:

int ret = 0;
string devtablename = "user";

string data = "Pin=2";

string options ="";

ret = DeleteDeviceData(h, devtablename, data, options);

PullSDK Interfaces User Guide

4.10 GetRTLog

[Function]
int GetRTLog(HANDLE handle,char *Buffer, int BufferSize)
[Objective]
The function is used to acquire the realtime event records generated by the equipment and the door status
or alarm status of the equipment.
[Parameter description]
handle
[in]: The handle that is returned when the connection is successful.
Buffer
[in] The buffer used to receive the returned data, the returned data is expressed in a text format.
This buffer stores two types of data: realtime event records and door/alarm status. The data returned by this
function can be only one of these types. A realtime event query can return multiple records simultaneously
(which depends on the number of event records in the realtime monitoring buffer on the equipment at that
time). For details of data formats in the buffer, see Attachment 7.
BufferSize
[in]: The size of the buffer used to receive the returned data.
[Returned value]
When the returned value is 0 or a positive value, it indicates the number of records for the received data.
When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the
information about the error codes.
[Example]
Python:
rt_log = create_string_buffer(256)
ret = self.commpro.GetRTLog(self. hcommpro, rt_log, 256)
ct:
int ret = 0;
int buffersize = 256;
byte[] buffer = new byte[256];
ret = GetRTLog(h, ref buffer[0], buffersize);

10

5. Appendix

4.11 SearchDevice

[Function]

int SearchDevice(char *CommType,char *Address, char *Buffer)
[Objective]

The function is used to search for the access control panel in the LAN.
[Parameter description]

CommType

[in]: If the communication type is set to UDP (or Ethernet), all devices of the specified communication

type will be searched.

Address

[in]: Broadcast address; the system searches for the devices in the LAN within the specified IP address
range; the default value is 255.255.255.255, known as network broadcasting.
Buffer

[in]: The buffer is used to save the detected devices. Users should determine the requested memory
according to the number of devices in the corresponding network. For example, if the network has not
more than 50 devices, it is recommended that users should request the memory of 32K if the network has
not more than 100 devices, it is recommended that users should request the memory of 64K.
[Returned value]

When the returned value is 0 or a positive value, it indicates the number of found access control panels.
When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the
information about the error codes.

[Note]

This approach is intended to search for access controllers on a LAN in UDP broadcast mode. UDP packets
cannot traverse routers, so an access controller must not be separated from a server by routers. If by this
means you find a device that resides on a different network segment as a server but fail to ping the IP
address of an access controller, you may set the controller and server addresses to be on the same subnet
(not necessarily on the same network segment). For details on network setting, consult related
administrator to obtain correct [P addresses, subnet masks and gateways.

[Example]

Python:
dev_buf = create_string_buffer("", 64¥1024)
ret=self.commpro.SearchDevice("UDP", "255.255.255.255", dev_buf)
cH:

int ret = 0;

string udp = "UDP";

string adr = "255.255.255.255";

byte[] buffer = new byte[64 * 1024];

ret = SearchDevice(udp,adr, ref buffer[0]);

11

PullSDK Interfaces User Guide

4.12 ModifyIPAddress

[Function]

int ModifylPAddress(char *CommType,char *Address, char *Buffer)

[Objective]

The function is used to modify the IP addresses of controllers through the UDP broadcast method. For
security purposes, only the IP addresses, subnets, and gateways of the access controllers with no passwords
specified can be modified.

[Parameter description]

CommType

[in]: Communication modes employed in search of access controllers: UDP (or Ethernet) in this example.

Address
[in]: Broadcast address; the default value is 255.255.255.255.
Buffer
[in]: The buffer is used to save the MAC addresses and new IP addresses of the target device.
Configure subnet masks and gateways according to current network, except for IP addresses.
[Returned value]
When the returned value is 0 or a positive value, it indicates the number of records for the received data.
When the returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the

information about the error codes.

[Example]

Python:
mac ='00:17:61:01:88:27" # MAC address of the target device
new_ip ="192.168.12.156' # New IP address of the device

comm_pwd ="

str = "MAC=%s,IPAddress=%s " % (mac,new_ip)

p_buf=create string_buffer(str)

modify_ip = self.commpro.ModifylPAddress(“UDP”, “255.255.255.255”, p_buf)
ct:

int ret = 0;

string udp = "UDP";

string address = "255.255.255.255";

string buffer = "MAC=00:17:61:01:88:27" + "," + "[PAddress=192.168.12.156";
ret = ModifyIPAddress(udp,address,buffer);

12

5. Appendix

4.13 PullLastError

[Function]
int PullLastError()
[Objective]
The function is used to Obtain the returned error code. If an error code return fails by using other error
codes, this function can be called to obtain the error code. For example, if 0 is returned when an equipment
connection fails by calling Connect(), you can run this function to obtain current error code.
[Parameter description]
None
[Returned value]
Error ID.
[Example]
Python:
See the new contents below.
params= u"protocol=TCP,ipaddress=192.168.1.201,port=4370,timeout=3000,passwd=123abc"
constr = create_string_buffer(params)
self.hcommpro = self.commpro.Connect(constr)
if self-hcommpro > 0:
self.connected = True
else:
error = self.commpro.PullLastError()
cH:
int ret = 0; // Error code
string str =7
protocol=TCP,ipaddress=192.168.1.201,port=4370,timeout=3000,passwd=123abc ”;
h = Connect(str);
if (h != IntPtr.Zero)
{

MessageBox. Show (“Connect device succeed!”);
else

ret = PullLastError();

MessageBox. Show (“Connect device Failed! The error code is: 7 + ret);

13

PullSDK Interfaces User Guide

4.14 SetDeviceFileData

[Function]

int SetDeviceFileData(void *Handle, const char *FileName, char *Buffer,int BufferSize,const char
*Options)

[Objective]

The function is used to transfer a file from the PC to the device. It mainly used to transfer the updade file.
The updade file name is emfw.cfg.
[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.

FileName

[in]: The name of the file transferred to the device, for example, a emfw.cfg file.
Buffer

[in]: The data buffer used to transfer a file.

BufferSize
[in] Length of the transferred data.

Options

[in]: The default value is null; it is used for extension.
[Returned value]
When the returned value is 0 or a positive value, it indicates that the operation is successful. When the
returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information
about the error codes.

[Example]

Python:

file_name = "emfw.cfg”

buff len = len(file_name)

pfile_name = create_string_buffer(file name)

pbuffer = create_string_buffer(buff len)
ret = self.commpro.SetDeviceFileData(self.hcommpro, pfile_name, pbuffer, buff len, "")
ct:

int ret = 0;

string filename = "emfw.cfg ";

FileStream fsFile = File.OpenRead(this.openFileDialogl.FileName);
string buffersize = (int)fsFile.Length;
byte[] buffer = new byte[buffersize];

string options ="";

ret = SetDeviceFileData(h, filename, ref buffer[0], buffersize, options);

14

5. Appendix

4.15 GetDeviceFileData

[Function]

int GetDeviceFileData(void *Handle,char *Buffer,int *BufferSize,const char *FileName,const char
*Options)

[Objective]

The function is used to obtain a file from the device to the PC. It can obtain user file, record file and etc.
[Parameter description]

Handle

[in]: The handle that is returned when the connection is successful.

FileName
[in] The name of the file obtained from the device, for example, the user file’s name is user.dat, record
file’s name is transaction.dat.
Buffer

[in]: Buffer used to receive the data.

BufferSize

[in]: Length of the received data.

Options

[in]: The default value is null; it is used for extension.
[Returned value]
When the returned value is 0 or a positive value, it indicates that the operation is successful. When the
returned value is a negative value, it indicates that the operation fails. Attached table 5 lists the information
about the error codes.

[Example]

Python:

file name = "user.dat”

pfile_name = create_string buffer(file name)

pbuffer = create string_buffer(4*102*1024)
ret = self.commpro.GetDeviceFileData(self.hcommpro, pbuffer, buff len, pfile_name, "")
cH:

int ret = 0;

int buffersize = 4 * 1024 * 1024;

byte[] buffer = new byte[buffersize];

string filename = "user.dat";

string options ="";

ret = GetDeviceFileData(h, ref buffer[0], ref buffersize, filename, options);

15

PullSDK Interfaces User Guide

4.16 ProcessBackupData

[Function]
int ProcessBackupData(const unsigned char *revBuf, int fileLen, char *outBuf,

int outSize)

[Objective]

The files used for processing equipment backup files, for example, backup files in an SD card.
[Parameter description]

revBuf

[in] The uploaded files;

fileLen

[in] The file length;

outBuf

[in] To receive the returning data;

outsize
[in] The max length of the receiving data.
[Returned value]

The returning value is 0 or positive number for success operation. Otherwise, the operation is
failed. For the error codes, please refer to the Appendix 5.
[Example]
Python :
filename = “sddata.dat”
buff len = len(filename)
buf = create_string_buffer(filename)
buffer = create_string_buffer(16*1024%1024)
ret = self.commpro. ProcessBackupData(buf, buff_len, ref buffer[0], 16 * 1024 * 1024)
c# :
byte[] buffer = new byte[16 * 1024 * 1024];
byte[] buf = new byte[16 * 1024 * 1024];
int BufferSize = 0;
intret=-1;
string filename = "user.dat";
StreamReader proFile = new StreamReader(filename);
BufferSize = proFile.BaseStream.Read(buf, 0, 16 * 1024 * 1024);
ret = ProcessBackupData(buf, BufferSize, ref buffer[0], 16 * 1024 * 1024);

16

5. Appendix

5. Appendix

5.1 Attached Table 1: Detailed Description of Interface Files

File Name Description

plcommpro.dil Dynamic connection database interface of the PullSDK function

plcomms.dll Database on which the PullSDK interfaces rely

plrscomm.dll Database on which the PullSDK interfaces rely

pltcpcomm.dll Database on which the PullSDK interfaces rely

rscagent.dll Database on which the PullSDK interfaces rely

5.2 Attached Table 2: Description of Controller Parameters

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only
The number of locks on the control
Number of doors LockCount Read only
board.
Only indicates the number of
Number of readers ReaderCount Read only .
Wiegand standard readers.
Customized input quantity AuxInCount Read only
Customized output quantity AuxOutCount Read only
) Default: null character string.
. Read/writ .)
Communication Password ComPwd Maximum: 15-bit characters
e
(including digits and letters).
Read/writ
IP Address IPAddress Default: 192.168.1.201
e
Read/writ .
Gateway GATEIPAddress Default value is [PAddres
e
Read/writ
BaudRate RS232BaudRate Default: 38400
e
Read/writ
Subnet mask NetMask Default: 255.255.255.0
e
Anti-passback rule AntiPassback Read/writ One-door and two-way controller
e 1:Enable the anti-passback function
(Door 1 and Door 2 each between the readers of Door 1
other is anti-passback, when Two-door and single-way controller
Door 2 will be opened before 1: Enable the anti-passback function
Door 1 has opened , and Door between Door 1 and Door 2
1 can’t open two consecutive Two-door and two-way controller
door) 1: Enable the anti-passback function
between the readers of Door 1

17

PullSDK Interfaces User Guide

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only

2: Enable the anti-passback function
between the readers of Door 2
3: Enable the anti-passback function
between the readers of Door 1 and
between the readers of Door 2
respectively
4: Enable the anti-passback function
between Door 1 and Door 2
Four-door and single-way controller
1: Enable the anti-passback function
between Door 1 and Door 2
2: Enable the anti-passback function
between Door 3 and Door 4
3: Enable the anti-passback function
between Door 1 and Door 2, and
between Door 3 and Door 4
4: Enable the anti-passback function
between Door 1,2 and Door 3,4
5: Enable the anti-passback function
between Door 1 and Door 2,3
6: Enable the anti-passback function
between Door 1 and Door 2,3,4
16: denotes that only supports anti-
passback function between the
readers of Door 1
32: denotes that only supports anti-
passback function between the readers
of Door 2
64: denotes that only supports anti-
passback function between the readers
of Door 3
128: denotes that only supports anti-
passback function between the readers of
Door 4

Other options:

48: denotes that Doorl and 2
support concurrent anti-passback
among their respective readers.

80: denotes that Doorl and 3
support concurrent anti-passback

among their respective readers.

18

5. Appendix

Attribute Name

Parameter

Read/Writ
e Type

Remarks

SerialNumber of device

~SerialNumber

Read only

144: denotes that Doorl and 4
support concurrent anti-passback
among their respective readers.

96: denotes that Door2 and 3
support concurrent anti-passback
among their respective readers.

160: denotes that Door2 and 4
support concurrent anti-passback
among their respective readers.

196: denotes that Door3 and 4
support concurrent anti-passback
among their respective readers.

112: denotes that Doorl, 2, and 3
support concurrent anti-passback among
their respective readers.

176: denotes that Doorl, 2, and 4
support concurrent anti-passback among
their respective readers.

208: denotes that Doorl, 3, and 4
support concurrent anti-passback among
their respective readers.

224: denotes that Door2, 3, and 4
support concurrent anti-passback among
their respective readers.

240: denotes that Doorl, 2, 3 and 4
support concurrent anti-passback among
their respective readers.

(Choose and configure the preceding
options as required)

Interlock

(Door 1 and Door 2 each

other is interlock. When the
Door 1 in the opening , the
Door 2 can only be turned off.
Instead the Door 2 is opened,
the Door 1
opened.)

can not be

InterLock

Read/writ
e

Two-door controller

1: Interlock Door 1 and Door 2
mutually

Four-door control

1: Interlock Door 1 and Door 2
mutually
2: Interlock Door 3 and Door 4
mutually
3: Interlock Door 1, Door 2 and
Door 3 mutually
4: Interlock Door 1 and Door 2

19

PullSDK Interfaces User Guide

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only
mutually, and interlock Door 3 and
Door 4 mutually
5: Interlock Door 1, Door 2, Door 3
and Door 4 mutually
Door1ForcePassWord
Door2ForcePassWord Read/writ .
Duress Password Max: 8 digits
Door3ForcePassWord e
Door4ForcePassWord
DoorlSupperPassWor
d
Door2SupperPassWor
d Read/writ o
Emergency Password Max: 8 digits
Door3SupperPassWor e
d
Door4SupperPassWor
d
DoorlCloseAndLock
. Door2CloseAndLock Read/writ 1: Enabled
Lock at door closing .
Door3CloseAndLock e 0: Disabled
Door4CloseAndLock
DoorlSensorType)
. 0: Not available
Door2SensorType Read/writ
Door sensor type 1: Normal open
Door3SensorType e
2: Normal closed
Door4SensorType
Door1Drivertime The value range is 0 to 255.
. i Door2Drivertime Read/writ 0: Normal closed
Lock driver time length))
Door3Drivertime e 255: Normal open
Door4Drivertime 1 to 254: Door-opening duration
Doorl1Detectortime
Timeout alarm duration of | Door2Detectortime Read/writ The value range is 0 to 255.
door magnet Door3Detectortime e Unit: second
Door4Detectortime
1:Fingerprint
Doorl VerifyType seip
. : 4: Card
) Door2 VerityType Read/writ i
Verify mode . 6:Card or fingerprint
Door3VerifyType e .
. 10:Card and fingerprint
Door4VerifyType
11: Card and password
Multi-card opening Door1MultiCardOpenD Read/write 0: Disabled
oor 1: Enabled
(The Door can be opened by Door2MultiCardOpenD
more than one person through oor

20

5. Appendix

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only
verified by, In Attached table
4<Multi-card opening table .
. Door3MultiCardOpenD
> set group number of multi-
oor
card to open the door , Person .
] o DoordMultiCardOpenD
in the group which is more
oor
than one authentication, set
most five people.)
DoorlFirstCardOpenDo Read/writ 0: Disabled
or e 1: First-card normal open
Door2FirstCardOpenDo
Opening the door through the or
first card Door3FirstCardOpenDo
or
Door4FirstCardOpenDo
or
.) DoorlValidTZ
Active time segment of the))
.) . Door2ValidTZ Read/writ . .
door (time segment in which a) Default: 0 (the door is not activated)
) Door3ValidTZ e
valid punch) .
Door4ValidTZ
Door1KeepOpenTimeZo | Read/writ
ne e
Door2KeepOpenTimeZo
Normal-open time segment of | ne .
i Default: 0 (the parameter is not set)
the door Door3KeepOpenTimeZo
ne
Door4KeepOpenTimeZo
ne
DoorlIntertime
) Door2Intertime Read/writ) .
Punch interval . 0 means no interval (unit: second)
Door3Intertime e
Door4Intertime
Read/writ 0: Disabled
MCU Watchdog WatchDog
e 1: Enabled
Read/writ 0: Disabled
4 doors turn 2 doors Door4ToDoor2
e 1: Enabled
The date of Cancel Normal | DoorlCancelKeepOpen Read only
Open Day
Door2CancelKeepOpen
Day
Door3CancelKeepOpen
Day

21

PullSDK Interfaces User Guide

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only
Door4CancelKeepOpen
Day
The time of backup SD card BackupTime Read/writ The value range are 1 to 24
Reboot the device Reboot Write only | Reboot=1
DateTime= ((Year-2000)*12*31 +
(Month -1)*31 + (Day-1))*(24*60*60)
+ Hour* 60 *60 + Minute*60 +
Second;
For example, the now datetime is 2010-
10-26 20:54:55, so DateTime=
347748895;
And calculate the reverse “DateTime =
Synchronization time DateTime Write only | 3477488957,
Second = DateTime % 60;
Minute = (DateTime / 60) % 60 ;
Hour = (DateTime /3600) % 24 ;
Day = (DateTime / 86400) % 31+
l;
Month= (DateTime / 2678400) % 12
+1;
Year = (DateTime / 32140800) +
2000
Read/writ 0: Disabled
Door4 turn to Door2 Door4ToDoor2
e 1: Enabled
Read/writ 0: One-way
One-way / two-way Reader InBIOTowWay
e 1: Two-way
Device fingerprint identification) 9: 9.0 version
) ~ZKFPVersion Read only)
version 10: 10.0 version
Display parameters of DSTE Read/writ 0: Never Show(default)
daylight saving time e 1: show
Enablement parameters of DaylightSavingTimeO Read/writ 0: Never start(default)
daylight saving time n e 1: sart
Enable mode of daylight Read/writ 0: mode 1
S DLSTMode
saving time e 1: mode 2
Mode of daylight saving time . o Read/writ The value have 4 bytes: “month-
) DaylightSavingTime .
—Start time e date-hour-minute”
Mode of daylight saving time) Read/writ The value have 4 bytes: “month-
) StandardTime .
— Over time e date-hour-minute”
Mode 2 of daylight saving Read/writ
) WeekOfMonthl The value range are 1 to 12
time: Month e

22

5. Appendix

. Read/Writ
Attribute Name Parameter Remarks
e Type
SerialNumber of device ~SerialNumber Read only
The begin week of daylight .
o Read/writ
saving time Mode 2: XX WeekOfMonth2 The value range are 1 to 6
e
week
The begin day of daylight .
. . Read/writ
saving time Mode 2 : XX WeekOfMonth3 The value range are 1 to 7
e
(Sunday to Saturday)
The begin of daylight saving Read/writ
. WeekOfMonth4 The value range are 0 to 23
time Mode 2 : Hour e
The begin of daylight saving Read/writ
) ; WeekOfMonth5 The value range are 0 to 59
time Mode 2 : minute e
The end of daylight saving Read/writ
) WeekOfMonth6 The value range are 1 to 12
time Mode 2 : Month e
The end week of daylight .
)) Read/writ
saving time Mode 2 : XX WeekOfMonth7 The value range are 1 to 6
e
week
The end day of daylight i
]) Read/writ
saving time Mode 2 WeekOfMonth8 The value range are 1 to 7
e
XX(Sunday to Saturday)
The end of daylight saving Read/writ
. WeekOfMonth9 The value range are 0 to 23
time Mode 2 : Hour e
The end of daylight saving Read/writ
) - WeekOfMonth10 The value range are 0 to 59
time Mode 2 : Minute e

23

PullSDK Interfaces User Guide

5.3 Attached Table 3: Description of ControlDevice Parameters

) Descriptio)
OperationID Paraml Param?2 Param3 Param4 Options
n
0: disable
255: normal
1: Door
¢ open state
ouptpl%) 1~60: normal
2: auxiliary _
Door number open or the Expansi
. output (t)
Output or auxiliary duration of reserve on
1] he address
operation output normal open d paramete
type of .
number (If ris null
output
. Param2=1, the
operation
) value of
Param3 makes
sense)
Expansi
Cancel 0 Cnul reserve on
2 0 Cnull) 0 Cnull)
alarm) d paramete
ris null
Expansi
Restart 0 Cnull reserve on
3) 0 Cnull) 0 Cnull)
device) d paramete
ris null
Enable/dis Expansi
able 0: disable reserve on
4 Door number 0 Cnull)
normal 1: enable d paramete
open state ris null

Note: If OperationID=1, Param2 determine the Param1 value is door number or auxiliary output number.
If Param1 is door number, the max value is the door number that the device permitted. If the Paraml is

auxiliary output number, the max value is the auxiliary output number that the device permitted.

24

5. Appendix

5.4 Attached Table 4: Description of Structure of Function Tables

Table Name

TableName

Field

Remarks

Card
number

information
table

user

CardNo, Pin, Password, Group,
StartTime, EndTime

The StartTime and EndTime should be
specified in a correct format.
YYYYMMDD; for example: 20100823;
Group indicates the personnel group of

multi-card verifycation.

Access
privilege list

userauthoriz

€

Pin, AuthorizeTimezoneld,
AuthorizeDoorld

AuthorizeDoorld is authorized by the

door:

1 denotes LOCK1

2 denotes LOCK2

3 denotes LOCK1 and LOCK2

4 denotes LOCK3

5 denotes LOCK1 and LOCK3

6 denotes LOCK2 and LOCK3

7 denotes LOCK1, LOCK2, LOCK3

8 denotes LOCK4

9 denotes LOCK1 and LOCK4

10 denotes LOCK2 and LOCK4

11 denotes LOCK 1, LOCK2, LOCK4
12 denotes LOCK3 and LOCK4

13 denotes LOCK1, LOCK3, LOCK4
14 denotes LOCK2, LOCK3, LOCK4

15 denotes LOCK 1, LOCK2, LOCK3
and LOCK4.

Assume that four doors are numbered
1, 2, 3, and 4 respectively, then:

1<<(1-1)+1<<2-1)+1<<(3-1)+1<<(4-
1)=15

or (1111),= (15)10

Holiday
table

holiday

Holiday, HolidayType, Loop

The HolidayType value can be 1, 2, and
3.
Loop value: 1 (loop by year), 2 (not loop

by year)

25

PullSDK Interfaces User Guide

Table Name | TableName | Field Remarks
Timezoneld,
SunTimel, SunTime2,
SunTime3,
MonTimel, MonTime2,
MonTime3, . .
] i The Time format is as follows:
TueTimel, TueTime2, .
i (hour*100 + minute)<<16-+(hour*100 +
TueTime3, .
. . minute)
WedTimel, WedTime2,
. For example: set 8:30-12:30 on Monday
] WedTime3, . .
Time zone .]) as time segment 1, so the value is
timezone ThuTimel, ThuTime2,
table) MonTimel1=54396110:
ThuTime3,
— — . 8:30 — 8*100+30 — 33E (Hex)
FriTimel, FriTime2, FriTime3,
i i : 12:30 — 12*100+30 — 4CE (Hex)
SatTimel, SatTime2, SatTime3, .
. . 033E04CE — 54396110 (Decimal)
HollTimel, Holl1 Time2,
HollTime3,
Hol2Timel, Hol2Time2,
Hol2Time3,
Hol3Timel, Hol3Time2,
Hol3Time3
The Verified mode can be as follows:
1:Only finger
3: Only password
4: Only card
11: Card and password
200: Others
Time_second should be specified in a
correct format: YYYY-MM-DD
hh:mm:ss
(After writing, data formats will conversio
. . n, if want to take out to analysis, analytical
Access Cardno, Pin, Verified, DoorlD, .
) formula is as follows:
control transaction EventType, InOutState,
) second =t % 60;
record table Time second
- t/=60;
minute =t % 60,
t/=60;
hour =1t % 24;
t/=24;
day=t%31+1;
t/=31;
month=t% 12+ 1;
t/=12;
year =t-+2000);

The EventType, See Attachment 6

26

5. Appendix

Table Name | TableName | Field Remarks
First-card
door-))
. firstcard Pin, DoorID, TimezonelD
opening
table
Multi-card
. . Index, Doorld, Group1, Group2, Group 1 to Group 5 are the numbers of the
opening multicard . .
tabl Group3, Group4, Group5 multi-card opening groups
e
For details on EventTypes, see the types
of access control record lists.
When the EventType value is 220 (the
. auxiliary input point is off) or 221 (the
Linkage o . o
auxiliary input point is short-circuited), the
control I/O . o o
bl input point is the auxiliary input. When the
e
EventType value is not 220 or 221, the
input point is a door.
(When the P . po . .
. The input point InAddr is a door:
trigger
o 0: Any door
condition is
1: Door 1
detected and
. . 2:Door 2
immediately
3: Door 3
start the
4: Door 4
other . . . o
The input point InAddr is the auxiliary
events)]
mput:
For .
0: Any auxiliary input
example: Index, EventType, InAddr, .
. i 1: Auxiliary input 1
Open the inoutfun OutType, OutAddr, OutTime, T
. 2: Auxiliary input 2
door 1 is Reserved T
3: Auxiliary input 3
detected e
. 4: Auxiliary input 4
(trigger .
. When the OutType value is 0, the output
conditions),) .
t point OutAddr indicates a lock:
e
. . 1:Lock 1
immediate
L 2: Lock 2
alarm, open
- oP 3: Lock 3
the video
] 4:Lock 4
surveillance)
When the OutType value is 1, the output
, close the : . -
point OutAddr indicates the auxiliary
door 2, door
output:
3, door 4, -
1: Auxiliary output 1
etc. (other .
2: Auxiliary output 2
events)

3: Auxiliary output 3
4: Auxiliary output 4
5: Auxiliary output 5
6: Auxiliary output 6

27

PullSDK Interfaces User Guide

Table Name | TableName | Field Remarks
Size . UID. PIN. Fingerl

templatevl0 | templatevl)
D. Valid. Template . Resv

table 0
erd . EndTag

Note: The fields in the table are case-sensitive.

5.5 Attached Table 5: Description of Error Codes in the Returned Values

(1) Error Code of PullSDK and Firmware By provided

Error Code Description
-1 The command is not sent successfully
-2 The command has no response
-3 The buffer is not enough
-4 The decompression fails
-5 The length of the read data is not correct
-6 The length of the decompressed data is not consistent with the expected length
-7 The command is repeated
-8 The connection is not authorized
-9 Data error: The CRC result is failure
-10 Data error: PullSDK cannot resolve the data
-11 Data parameter error
-12 The command is not executed correctly
-13 Command error: This command is not available
-14 The communication password is not correct
-15 Fail to write the file
-16 Fail to read the file
-17 The file does not exist
-99 Unknown error
-100 The table structure does not exist
-101 In the table structure, the Condition field does not exit
-102 The total number of fields is not consistent
-103 The sequence of fields is not consistent
-104 Real-time event data error
-105 Data errors occur during data resolution.
-106 Data overflow: The delivered data is more than 4 MB in length
-107 Fail to get the table structure
-108 Invalid options
-201 LoadLibrary failure
-202 Fail to invoke the interface
-203 Communication initialization fails
206 Start of a serial interface agent program fails and the cause generally relies in
inexistence or occupation of the serial interface.
-301 Requested TCP/IP version error

28

5. Appendix

Error Code Description
-302 Incorrect version number
-303 Fail to get the protocol type
-304 Invalid SOCKET
-305 SOCKET error
-306 HOST error
-307 Connection attempt failed

(2) WinSocket Error Codes

10035

Resources temporarily unavailable.

This error is returned from operations on nonblocking sockets that cannot be
completed immediately, for example, recv (Wsapiref 2i9¢.asp) when no data is
queued to be read from the socket. It is a non-fatal error, and the operation
should be retried later. It is normal for WSAEWOULDBLOCK to be reported
as the result from calling connect on a nonblocking SOCK _STREAM socket
(Wsapiref 8m7m.asp), since some time must elapse for the connection to be
established.

10038

An operation was attempted on something that is not a socket. Ether the socket
handle parameter did not reference a valid socket, or for select, a member of an

fd set was no valid.

10054

Connection reset by peer.

An existing connection was forcibly closed by the remote host. This normally
results if the peer application on the remote host is suddenly stopped, the host
is rebooted, the host or remote network interface is disabled, or the remote host
uses a hard close (See setsockopt (Wsapiref 94aa.asp) for more information on
the SO_LINGER option on the remote socket). This error may also result if a
connection was broken due to keep-alive activity detecting a failure while one
or more operations are in progress. Operations that were in progress fail with
WSAENETRESET. Subsequent operations fail with WSAECONNRESET.

10060

Connection timed out.

A connection attempt failed because the connected party did not properly
respond after a period of time, or established connection failed because
connected host has failed to respond.

10061

Connection refused.

No connection could be made because the target machine actively refused it.
This usually results from trying to connect to a server that is inactive on the
foreign host — that is, one with no server application running.

10065

No route to host.
A socket operation was attempted to an wunreachable host. See
WSAENETUNREACH.

29

PullSDK Interfaces User Guide

5.6 Attached Table 6: Description of Event Types and Code

Code Event Types Description
In [Card Only] verification mode, the person has open
0 Normal Punch Open door permission punch the card and triggers this normal
event of open the door.
At the normally open period (set to normally open period
of a single door or the door open period after the first
1 Punch during Normal Open Time card normally open), or through the remote normal open
Zone operation, the person has open door permission punch the
effective card at the opened door to trigger this normal
events.
In [Card Only] verification mode, the person has first
5 First Card Normal Open (Punch card normally open permission, punch card at the setting
Card) first card normally open period but the door is not
opened, and trigger the normal event.
In [Card Only] verification mode, multi-card combination can
3 Multi-Card Open (Punching Card) be used to open the door. After the last piece of card verified,
the system trigger this normal event.
The password (also known as the super password) set for the
4 Emergency Password Open current door can be used for door open. It will trigger this
normal event after the emergency password verified.
.) If the current door is set a normally open period, the door
Open during Normal Open Time)]))
5 Zone will open automatically after the setting start time, and
trigger this normal event.
.) When the linkage setting the system takes effect, trigger
6 Linkage Event Triggered .
this normal event.
‘When the user cancel the alarm of the corresponding door, and
7 Cancel Alarm e . .
the operation is success, trigger this normal event.
i When the user opens a door from remote and the
8 Remote Opening . . .
operation is successful, it will trigger this normal event.
) When the user close a door from remote and the
9 Remote Closing .. P .
operation is successful, it will trigger this normal event.
When the door is in Normally Open (NO) state, swipe
10 Disable Intraday Normal Open Time | your valid card five times through the reader or call
Zone ControlDevice to disable the NO period on that day. In
this case, trigger this normal event.
When the door’s NO period is disabled, swipe your valid
1 Enable Intraday Normal Open Time | card (held by the same user) five times through the reader
Zone or call ControlDevice to enable the NO period on that
day. In this case, trigger this normal event.
12 Open Auxiliary Output If the output point address is set to a specific auxiliary

30

5. Appendix

output point and the action type is set enabled in a
linkage setting record, then this normal event will be
triggered as long as this linkage setting takes effect.

13

Close Auxiliary Output

Events that are triggered when you disable the auxiliary input
through linkage operations or by calling ControlDevice.

14

Press Fingerprint Open

Normal events that are triggered after any person
authorized to open the door presses his fingerprint and
passes the wverification in “Fingerprint only” or
“Card/Fingerprint” verification modes.

15

Multi-Card Open (Press Fingerprint)

Multi-card open(Fingerprint required): normal events
that are triggered when the last person opens the door
with his fingerprint in “Finger print” verification mode.

16

Press Fingerprint during Normal
Open Time Zone

Normal events that are triggered after any person
authorized to open the door presses his valid fingerprint
during the NO duration (including the NO durations set
for single doors and the first-card NO duration) and
through remote operations.

17

Card plus Fingerprint Open

Normal events that are triggered after any person
authorized to open the door swipes his card and presses

his fingerprint to pass the verification in the “Card +
Fingerprint” verification mode.

18

First Card Normal Open (Press
Fingerprint)

Normal events that are triggered after any person authorized to
open the door becomes the first one to press his fingerprint and
pass the verification during the preset first-card NO duration
and in either the “Fingerprint only” or the “Card/Fingerprint”

verification mode.

19

First Card Normal Open (Card plus
Fingerprint)

Normal events that are triggered after any person
authorized to open the door becomes the first one to
swipe his card and press his fingerprint to pass the

verification during the preset first-card NO duration and

in the “Card + Fingerprint” verification mode.

20

Too Short Punch Interval

When the interval between two card punching is less than the
interval preset for the door, trigger this abnormal event.

21

Door Inactive Time Zone (Punch
Card)

In [Card Only] verification mode, the user has the door open
permission, punch card but not at the door effective period of
time, and trigger this abnormal event.

22

Illegal Time Zone

The user with the permission of opening the current door,
punches the card during the invalid time zone, and triggers this

abnormal event.

23

Access Denied

The registered card without the access permission of the
current door, punch to open the door, triggers this abnormal

event.

24

Anti-Passback

When the anti-pass back setting of the system takes effect,
triggers this abnormal event.

31

PullSDK Interfaces User Guide

When the interlocking rules of the system take effect, trigger

25 Interlock :
this abnormal event.
. o Use multi-card combination to open the door, the card
Multi-Card Authentication
26 . verification before the last one (whether verified or not), trigger
(Punching Card) .
this normal event
. Refers to the current card is not registered in the system, trigger
27 Unregistered Card :
this abnormal event.
- The door sensor detect that it is expired the delay time after
28 Opening Timeout: . . .
opened, if not close the door, trigger this abnormal event
The person with the door access permission, punch card to
29 Card Expired open the door after the effective time of the access control, can
not be verified and will trigger this abnormal event.
Use card plus password, duress password or emergency
30 Password Error password to open the door, trigger this event if the
password is wrong.
)) . When the interval between two consecutive fingerprints
Too Short Fingerprint Pressing .) . .
31 is less than the interval preset for the door, trigger this
Interval
abnormal event.
In either the “Fingerprint only” or the “Card/Fingerprint”
) . verification mode, when any person presses his fingerprint to
Multi-Card Authentication (Press .
32 Fi) open the door through the multi-card access mode and before
ingerprin
getp the last verification, trigger this event regardless of whether the
verification attempt succeeds.
When any person fails to pass the verification with his
33 Fingerprint Expired fingerprint at the end of the access control duration preset
by himself, trigger this event.
Events that are triggered when any fingerprints are not
34 Unregistered Fingerprint registered in the system or registered but not
synchronized to the device.
o Abnormal events that are triggered when any person
Door Inactive Time Zone (Press) . . .
35 . . authorized to open the door presses his fingerprint during
Fingerprint) . .
the preset valid duration.
o . Abnormal events that are triggered when any person fails
Door Inactive Time Zone (Exit .]
36 Button) to open the door by pressing the Unlock button during
utton
the preset valid duration.
37 Failed to Close during Normal Open | Abnormal events that are triggered when any person fails
Time Zone to close the door in NO state by calling ControlDevice.
Use the duress password of current door verified and triggered
101 Duress Password Open
alarm event.
102 Opened Accidentally Except all the normal events (normal events such as user with

door open permission to punch card and open the door,
password open door, open the door at normally open period,
remote door open, the linkage triggered door open), the door
sensor detect the door is opened, that is the door is

32

5. Appendix

unexpectedly opened.
. . Use the duress fingerprint of current door verified and triggered
103 Duress Fingerprint Open
alarm event.
When the door sensor detects that the door has been properly
200 Door Opened Correctly)))
opened, triggering this normal event.
When the door sensor detects that the door has been properly
201 Door Closed Correctly))]
closed, triggering this normal event.
. User press the exit button to open the door within the door
202 Exit button Open o . .
valid time zone, and trigger this normal event.
. Normal events that are triggered when any person passes
Multi-Card Open (Card plus . .) . L .
203 . . the verification with his card and fingerprint in multi-
Fingerprint)
card access mode.
After the setting normal open time zone, the door will close
) automatically. The normal open time zone include the normal
204 Normal Open Time Zone Over) . .
open time zone in door setting and the selected normal open
time zone in first card setting.
i Normal events that are triggered when the door is set to
205 Remote Normal Opening) .
the NO state for remote opening operations.
. When the device is being activated, this normal event is
206 Device Start .
triggered.
. . When any auxiliary input point breaks down, this normal
220 Auxiliary Input Disconnected .
event is triggered.
o When any auxiliary input point has short circuited, this
221 Auxiliary Input Shorted o
normal event is triggered.
Actually that obtain door status
255 See Attachment 7

and alarm status

33

PullSDK Interfaces User Guide

5.7 Formats of Returned Data in Buffer of the GetRTLog Function

When the data in the buffer is resolved and detected to be:

® Multiple realtime event records: separate those records into single ones with “\r\n”.

® Door and alarm status recorded in single entries: separate those single records with a comma
considering that the data of single records is separated with a comma.

When you resolve single records, make adjustments according to bit 4 of the separated data. If bit 4 is 255, this

record contains the door status and alarm status only; otherwise, this record contains realtime event records.

The following table compares the data structures of these two records.

Bit
0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6
Alarm
status
DSS status (1:
(0: no alarm; 200 (Indicates that
Door/Ala . Temporar . . .
Tim| DSS; 1: 2: .] Temporaril the verification
rm ilynotin | 255 .]
e door door ynotinuse| mode is “none”);
Status . use .
closed; 2: openin not in use
dooropen) | g
timeou
t)
The verification
Event .
. mode is the same
Door type Entry/Exit
) . as the door
Realtime . Pin No., code. status: .
Tim Card opening mode of
Event (Employee namely See Att| (0: entry;
e No.] controller
Records No.) lock achment 1: exit:
parameters
number 6 for 2: none) . .
. described in
details.
Attachment 2.
Note:
(1)

The device can temporarily save a maximum of 30 realtime event records. You can call GetRTLog to
check whether the cache contains event records. If so, the device returns all records (30 entries at
most) in the current cache; otherwise, the device returns the door and alarm status events referred
above.

2

The door status records contain the open/closed status of current door (on the premise that the DSS is

connected). Additionally, you can judge the current door status through “Door already open” (Event
code: 200) and “Door already closed” (Event code: 201).

)
When the record adopts the door/alarm status, the door status contained in all records actually is the door

status (four doors at most) of all doors of the device. 4 bytes are respectively represents four door status,

34

5. Appendix

arranged in an ascending order separately represent doors 1 to 4. For example, if this value is
0x01020001, door No.1 is closed, door No.2 is not configured with the DSS, door No.3 is door opened,
and door No.4 is door closed. Contained in the alarm status (and Opening Timeout) (The Second place)
the same that 4 bytes are respectively represents four door status, behind two place of Each byte
respectively represents whether that have alarm or door open is overtime, arranged in an ascending order
separately represent alarm or door opening timeout. For example, if this value is 0x01020001, door No.1
is closed, door No.3 means door opening timeout, door No.2 and No.4 means alarm.

4
When the record adopts “realtime event” status and type of event is Triggered Linkage Event (the code of
type event: 6), the sixth place saved Linkage Event Triggered, and the second is for reuse of Linkage
ID, It have software for the device synchronous linkage setting (usually the linkage in the ID value of
software end database).

35

